

CHAPTER - 11

MEASURES OF CENTRAL TENDENCY AND DISPERSION

Copyright -The Institute of Chartered Accountants of India

LEARNING OBJECTIVES

After reading this Chapter , a student will be able to understand different measures of central tendency, i.e. Arithmetic Mean, Median, Mode, Geometric Mean and Harmonic Mean, and computational techniques of these measures.

They will also learn comparative advantages and disadvantages of these measures and therefore which measures to use in which circumstance.

However, to understand a set of observation, it is equally important to have knowledge of dispersion which indicates the volatility. In advanced stage of chartered accountancy course, volatility measures will be useful in understanding risk involved in financial decision making. This chapter will also guide the students to know details about various measures of dispersion.

11.1 DEFINITION OF CENTRAL TENDENCY

In many a case, like the distributions of height, weight, marks, profit, wage and so on, it has been noted that starting with rather low frequency, the class frequency gradually increases till it reaches its maximum somewhere near the central part of the distribution and after which the class frequency steadily falls to its minimum value towards the end. Thus, central tendency may be defined as the tendency of a given set of observations to cluster around a single central or middle value and the single value that represents the given set of observations is described as a measure of central tendency or, location or average. Hence, it is possible to condense a vast mass of data by a single representative value. The computation of a measure of central tendency plays a very important part in many a sphere. A company is recognized by its high average profit, an educational institution is judged on the basis of average marks obtained by its students and so on. Furthermore, the central tendency also facilitates us in providing a basis for comparison between different distribution. Following are the different measures of central tendency:

- (i) Arithmetic Mean (AM)
- (ii) Median (Me)
- (iii) Mode (Mo)
- (iv) Geometric Mean (GM)
- (v) Harmonic Mean (HM)

11.2 CRITERIA FOR AN IDEAL MEASURE OF CENTRAL TENDENCY

Following are the criteria for an ideal measure of central tendency:

- (i) It should be properly and unambiguously defined.
- (ii) It should be easy to comprehend.
- (iii) It should be simple to compute.
- (iv) It should be based on all the observations.

- (v) It should have certain desirable mathematical properties.
- (vi) It should be least affected by the presence of extreme observations.

11.3 ARITHMETIC MEAN

For a given set of observations, the AM may be defined as the sum of all the observations to be divided by the number of observations. Thus, if a variable x assumes n values $x_1, x_2, x_3, \ldots, x_n$, then the AM of x, to be denoted by $\overline{\chi}$, is given by,

$$\overline{X} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

$$= \frac{\sum_{i=1}^{n} x_i}{n}$$

$$\overline{X} = \frac{\sum_{i=1}^{n} x_i}{n}$$
(11.1)

In case of a simple frequency distribution relating to an attribute, we have

$$\overline{x} = \frac{f_1 x_1 + f_2 x_2 + f_3 x_3 + \dots + f_n x_n}{f_1 + f_2 + f_3 + \dots + f_n}$$

$$= \frac{\sum f_i x_i}{\sum f_i}$$

$$\overline{X} = \frac{\sum f_i x_i}{N}$$
(11.2)

Assuming the observation x_i occurs f_i times, i=1,2,3,....n and $N=\leq f_i$

In case of grouped frequency distribution also we may use formula (11.2) with x_i as the mid value of the i-th class interval, on the assumption that all the values belonging to the i-th class interval are equal to x_i .

However, in most cases, if the classification is uniform, we consider the following formula for the computation of AM from grouped frequency distribution:

$$\overline{x} = A + \frac{\sum_{i} f_{i} d_{i}}{N} \times C \qquad (11.3)$$

Where, $d_i = \frac{x_i - A}{C}$

A = Assumed Mean

C = Class Length

Illustrations

Example 11.1: Following are the daily wages in rupees of a sample of 9 workers: 58, 62, 48, 53, 70, 52, 60, 84, 75. Compute the mean wage.

Solution: Let x denote the daily wage in rupees.

Then as given, $x_1=58$, $x_2=62$, $x_3=48$, $x_4=53$, $x_5=70$, $x_6=52$, $x_7=60$, $x_8=84$ and $x_9=75$.

Applying (11.1) the mean wage is given by,

$$\overline{x} = \frac{\sum_{i=1}^{9} x_i}{9}$$
= Rs. $\frac{(58+62+48+53+70+52+60+84+75)}{9}$
= Rs. $\frac{562}{9}$
= Rs. 62.44.

Example. 11.2: Compute the mean weight of a group of BBA students of St. Xavier's College from the following data:

Weight in kgs.

$$54 - 5$$

$$64 - 68$$

No. of Students

4

7

9

8

Solution: Computation of mean weight of 36 BBA students

Weight in kgs. (1)	No. of Student (f1) (2)	Mid-Value (x _i)	$f_{i}x_{i}$ $(4) = (2) \times (3)$
44 – 48	3	46	138
49 - 53	4	51	204
54 - 58	5	56	280
59 - 63	7	61	427
64 - 68	9	66	594
69 - 73	8	71	568
Total	36	-	2211

Applying (11.2), we get the average weight as

$$\overline{x} = \frac{\sum f_i x_i}{N}$$

$$=\frac{2211}{36}$$
 kgs.

$$= 61.42 \text{ kgs}.$$

Example. 11.3: Find the AM for the following distribution:

Solution: We apply formula (11.3) since the amount of computation involved in finding the AM is much more compared to **Example 11.2**. Any mid value can be taken as A. However, usually A is taken as the middle most mid-value for an odd number of class intervals and any one of the two middle most mid-values for an even number of class intervals. The class length is taken as C.

 $d_i = \frac{x_i - A}{C}$ Class Interval Frequency(f_i) $Mid-Value(x_i)$ f_id_i (1)(2) (5) = (2)X(4)(4)359.50 350 - 36923 3 - 69 370 - 389379.50 2 **-** 76 38 390 - 40958 399.50 - 58 410 - 4290 82 419.50 (A) 0 439.50 430 - 44965 1 65 450 - 46931 459.50 2 62

479.50

3

Table 11.2 Computation of AM

The required AM is given by

470 - 489

Total

$$\overline{x} = A + \frac{\sum_{i=1}^{\infty} f_i d_i}{N} \times C$$

$$= 419.50 + \frac{(-43)}{308} \times 20$$

$$= 419.50 - 2.79$$

$$= 416.71$$

33

- 43

11

308

Example. 11.4: Given that the mean height of a group of students is 67.45 inches. Find the missing frequencies for the following incomplete distribution of height of 100 students.

Height in inches

60 - 62

63 - 65 66 - 68

69 – 71

72 - 74

No. of Students

5

18

8

Solution : Let x denote the height and f_3 and f_4 as the two missing frequencies.

Table 11.3

Estimation of missing frequencies.

CI	Frequency	Mid - Value (x _i)	$d_i = \frac{x_i - A}{c}$	$f_i d_i$
	(f_i)		$d_{i} = \frac{x_{i} - A}{c}$ $\frac{x_{i} - 67}{3}$	
(1)	(2)	(3)	(4)	$(5) = (2) \times (4)$
60-62	5	61	-2	-10
63 - 65	18	64	- 1	- 18
66 - 68	f ₃	67 (A)	0	0
69 - 71	f ₄	70	1	f_4
72 - 74	8	73	2	16
Total	31+ f ₃ + f ₄	The last state of the last sta	-	- 12+f ₄

As given, we have

$$31 + f_3 + f_4 = 100$$

$$\Rightarrow \qquad \qquad f_3 + f_4 = 69$$

and $\bar{x} = 67.45$

$$A + \frac{\sum f_i d_i}{N} \times C = 67.45$$

$$\Rightarrow$$
 67 + $\frac{(-12 + f_4)}{100} \times 3 = 67.45$

$$\Rightarrow$$
 $(-12 + f_4) \times 3 = (67.45 - 67) \times 100$

$$\Rightarrow \qquad -12 + f_4 = 15$$

$$\Rightarrow$$
 $f_4 = 27$

On substituting 27 for f_4 in (1), we get

$$f_3 + 27 = 69$$
 \implies $f_3 = 42$

Thus, the missing frequencies would be 42 and 27.

Properties of AM

- (i) If all the observations assumed by a variable are constants, say k, then the AM is **also k.** For example, if the height of every student in a group of 10 students is 170 cm, then the mean height is, of course, 170 cm.
- the algebraic sum of deviations of a set of observations from their AM is zero (ii) i.e. for unclassified data , $\sum (x_i - \overline{x}) = 0$ and for grouped frequency distribution, $\sum f_i(x_i - \overline{x}) = 0$ (11.4)

For example, if a variable x assumes five observations, say 58,63,37,45,29, then $\bar{\chi} = 46.4$. Hence, the deviations of the observations from the AM i.e. $(x_i - \bar{x})$ are 11.60, 16.60, -9.40, -1.40 and -17.40, then $\sum (x_i - \overline{x}) = 11.60 + 16.60 + (-9.40) + (-1.40) + (-17.40) = 0$.

AM is affected due to a change of origin and/or scale which implies that if the original (iii) variable x is changed to another variable y by effecting a change of origin, say a, and scale say b, of x i.e. y=a+bx, then the AM of y is given by $\bar{y}=a+b\bar{x}$. For example, if it is known that two variables x and y are related by 2x+3y+7=0 and

 $\bar{x} = 15$, then the AM of y is given by $\bar{y} = \frac{-7 - 2\bar{x}}{3}$ $= \frac{-7 - 2 \times 15}{3} = \frac{-37}{3} = -12.33$

$$= \frac{-7 - 2 \times 15}{3} = \frac{-37}{3} = -12.33$$

If there are two groups containing n_1 and n_2 observations and $\bar{\chi}_1$ and $\bar{\chi}_2$ as the respective (iv) arithmetic means, then the combined AM is given by

$$\overline{x} = \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2}{n_1 + n_2}$$
 (11.5)

This property could be extended to k(72) groups and we may write

$$\overline{x} = \frac{\sum n_i \overline{x}_i}{\sum n_i} \qquad (11.6)$$

Example 11.5: The mean salary for a group of 40 female workers is Rs.5200 per month and that for a group of 60 male workers is Rs.6800 per month. What is the combined salary?

Solution : As given $n_1 = 40$, $n_2 = 60$, $\overline{x}_1 = \text{Rs.}5200$ and $\overline{x}_2 = \text{Rs.}6800$ hence, the combined mean salary per month is

$$\overline{x} = \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2}{n_1 + n_2}$$

$$= \frac{40 \times \text{Rs. } 5200 + 60 \times \text{Rs. } 6800}{40 + 60} = \text{Rs.}6160.$$

11.4 MEDIAN - PARTITION VALUES

As compared to AM, median is a positional average which means that the value of the median is dependent upon the position of the given set of observations for which the median is wanted. Median, for a given set of observations, may be defined as the middle-most value when the observations are arranged either in an ascending order or a descending order of magnitude.

As for example, if the marks of the 7 students are 72, 85,56,80,65,52 and 68, then in order to find the median mark, we arrange these observations in the following ascending order of magnitude: 52, 56, 65, 68, 72, 80, 85.

Since the 4th term i.e. 68 in this new arrangement is the middle most value, the median mark is 68 i.e. Me= 68.

As a second example, if the wages of 8 workers, expressed in rupees are

56, 82, 96, 120, 110, 82, 106, 100 then arranging the wages as before, in an ascending order of magnitude, we get Rs.56, Rs.82, Rs.82, Rs.96, Rs.100, Rs.106, Rs.110, Rs.120. Since there are two middle-most values, namely, Rs.96, and Rs.100 any value between Rs.96 and Rs.100 may be, theoretically, regarded as median wage. However, to bring uniqueness, we take the arithmetic mean of the two middle-most values, whenever the number of the observations is an even number. Thus, the median wage in this example, would be

$$M = \frac{Rs. 96 + Rs. 100}{2} = Rs. 98$$

In case of a grouped frequency distribution, we find median from the cumulative frequency distribution of the variable under consideration. We may consider the following formula, which can be derived from the basic definition of median.

$$\mathbf{M} = l_1 + \left(\frac{\frac{\mathbf{N}}{2} - \mathbf{N}_l}{\mathbf{N}_{\mathbf{u}} - \mathbf{N}_l}\right) \times \mathbf{C}$$
 (11.7)

Where,

 l_1 = lower class boundary of the median class i.e. the class containing median.

N = total frequency.

 N_{l} = less than cumulative frequency corresponding to l_{1} .

 N_u = less than cumulative frequency corresponding to l_2 .

 l_2 being the upper class boundary of the median class.

 $C = l_2 - l_1 = length of the median class.$

Example 11.6: Compute the median for the distribution as given in **Example 11.3.**

Solution: First, we find the cumulative frequency distribution which is exhibited in **Table 11.4.**

Table 11.4
Computation of Median

•	
Class boundary	Less than cumulative frequency
349.50	0
369.50	23
389.50	61
409.50 (<i>l</i> ₁)	119 (N ₁)
429.50 (<i>l</i> ₂)	201(N _u)
449.50	266
469.50	297
489.50	308

We find, from the **Table 11.4**, $\frac{N}{2} = \frac{308}{2} = 154$ lies between the two cumulative frequencies 119 and 201 i.e. 119 < 154 < 201 . Thus, we have $N_i = 119$, $N_u = 201$ $l_1 = 409.50$ and $l_2 = 429.50$. Hence C = 429.50 - 409.50 = 20. Substituting these values in (11.7), we get,

$$M = 409.50 + \frac{154 - 119}{201 - 119} \times 20$$
$$= 409.50 + 8.54$$
$$= 418.04.$$

Example 11.7: Find the missing frequency from the following data, given that the median mark is 23.

Mark : 0-10 10-20 20-30 30-40 40-50 No. of students : 5 8 ? 6 3

Solution : Let us denote the missing frequency by f_3 . Table 11.5 shows the relevant computation.

Table 11.5 (Estimation of missing frequency)

Mark	Less than cumulative frequency
0	0
10	5
20(1)	13(N ₁)
30(l_2)	$13+f_3(N_u)$
40	19+f ₃
50	22+f ₃

Going through the mark column, we find that 20<23<30. Hence /=120, /=120 and accordingly $N_{1}=13$, $N_{1}=13+f_{3}$. Also the total frequency i.e. $N_{1}=13+f_{3}$. Thus,

$$M = l_1 + \left(\frac{\frac{N}{2} - N_l}{N_u - N_l}\right) \times$$

$$\Rightarrow \qquad 23 = 20 + \frac{\left(\frac{22 + f_3}{2}\right) - 13}{(13 + f_3) - 13} \times 10$$

$$\Rightarrow \qquad 3 = \frac{22 + f_3 - 26}{f_3} \times 5$$

$$\Rightarrow \qquad 3f_3 = 5f_3 - 20$$

$$\Rightarrow \qquad 2f_3 = 20$$

 \Rightarrow f₃ = 10 So, the missing frequency is 10.

Properties of median

We cannot treat median mathematically, the way we can do with arithmetic mean. We consider below two important features of median.

(i) If x and y are two variables, to be related by y=a+bx for any two constants a and b, then the median of y is given by

$$y_{me} = a + bx_{me}$$

For example, if the relationship between x and y is given by 2x - 5y = 10 and if x_{me} i.e. the median of x is known to be 16.

Then
$$2x - 5y = 10$$

$$\Rightarrow$$
 $y = -2 + 0.40x$

$$\Rightarrow$$
 $y_{me} = -2 + 0.40 x_{me}$

$$\Rightarrow$$
 $y_{me} = -2 + 0.40 \times 16$

$$\Rightarrow$$
 $y_{me} = 4.40.$

(ii) For a set of observations, the sum of absolute deviations is minimum when the deviations are taken from the median. This property states that $\sum |x_i - A|$ is minimum if we choose A as the median.

PARTITION VALUES OR QUARTILES OR FRACTILES

These may be defined as values dividing a given set of observations into a number of equal parts. When we want to divide the given set of observations into two equal parts, we consider median. Similarly, quartiles are values dividing a given set of observations into four equal parts. So there are three quartiles – first quartile or lower quartile to be denoted by Q_1 , second quartile or median to be denoted by Q_2 or Me and third quartile or upper quartile to be denoted by Q_3 . First quartile is the value for which one fourth of the observations are less than or equal to Q_1 and the remaining three – fourths observations are more than or equal to Q_1 . In a similar manner, we may define Q_2 and Q_3 .

Deciles are the values dividing a given set of observation into ten equal parts. Thus, there are nine deciles to be denoted by D_1 , D_2 , D_3 ,.... D_9 , D_1 is the value for which one-tenth of the given observations are less than or equal to D_1 and the remaining nine-tenth observations are greater than or equal to D_1 when the observations are arranged in an ascending order of magnitude.

Lastly, we talk about the percentiles or centiles that divide a given set of observations into 100 equal parts. The points of sub-divisions being P_1 , P_2 , P_9 . P_1 is the value for which one hundredth of the observations are less than or equal to P_1 and the remaining ninety-nine hundredths observations are greater than or equal to P_1 once the observations are arranged in an ascending order of magnitude.

For unclassified data, the pth quartile is given by the (n+1)pth value, where n denotes the total number of observations. p = 1/4, 2/4, 3/4 for Q_1 , Q_2 and Q_3 respectively. p=1/10, 2/10,....,9/10. For D_1 , D_2 ,...., D_9 respectively and lastly p=1/100, 2/100,...,99/100 for P_1 , P_2 , P_3 P_{99} respectively.

In case of a grouped frequency distribution, we consider the following formula for the computation of quartiles.

$$Q = l_1 + \left(\frac{Np - N_l}{N_u - N_l}\right) \times C \qquad (11.8)$$

The symbols, except p, have their usual interpretation which we have already discussed while computing median and just like the unclassified data, we assign different values to p depending on the quartile.

Another way to find quartiles for a grouped frequency distribution is to draw the ogive (less than type) for the given distribution. In order to find a particular quartile, we draw a line parallel to the horizontal axis through the point Np. We draw perpendicular from the point of intersection of this parallel line and the ogive. The x-value of this perpendicular line gives us the value of the quartile under discussion.

Example 11.8: Following are the wages of the labourers: Rs.82, Rs.56, Rs.90, Rs.50, Rs.120, Rs.75, Rs.75, Rs.80, Rs.130, Rs.65. Find Q_1 , D_6 and P_{82} .

Solution: Arranging the wages in an ascending order, we get Rs.50, Rs.56, Rs.65, Rs.75, Rs.75, Rs.80, Rs.82, Rs.90, Rs.120, Rs.130. Hence, we have

$$Q_1 = \frac{(n+1)}{4} th value$$

$$= \frac{(10+1)}{4}$$
th value

$$= 2.75$$
th value

=
$$2^{nd}$$
 value + $0.75 \times$ difference between the third and the 2^{nd} values.

$$= Rs. [56 + 0.75 \times (65 - 56)]$$

$$D_6 = (10 + 1) \times \frac{6}{10}$$
 th value

=
$$6^{th}$$
 value + $0.60 \times difference$ between the 7^{th} and the 6^{th} values.

$$= Rs. (80 + 0.60 \times 2)$$

$$= Rs. 81.20$$

$$P_{82} = (10+1) \times \frac{82}{100}$$
 th value

$$= 9.02$$
th value

=
$$9^{th}$$
 value + $0.02 \times$ difference between the 10^{th} and the 9^{th} values

$$= Rs. (120 + 0.02 \times 10)$$

$$= Rs.120.20$$

Next, let us consider one problem relating to the grouped frequency distribution.

Example 11.9: Following distribution relates to the distribution of monthly wages of 100 workers.

Wages in Rs. : less than more than

500 500-699 700-899 900-1099 1100-1499 1500

No. of workers: 5 23 29 27 10 6

Compute Q_3 , D_7 and P_{23} .

Solution: This is a typical example of an open end unequal classification as we find the lower class limit of the first class interval and the upper class limit of the last class interval are not stated, and theoretically, they can assume any value between 0 and 500 and 1500 to any number respectively. The ideal measure of the central tendency in such a situation in median as the median or second quartile is based on the fifty percent central values. Denoting the first LCB and the last UCB by the L and U respectively, we construct the following cumulative frequency distribution:

Table 11.7 Computation of quartiles

For
$$Q_{3'}$$
 $\frac{3N}{4} = \frac{3 \times 100}{4} = 75$

since, 57<75 <84, we take $N_1 = 57$, $N_u = 84$, $l_1 = 899.50$, $l_2 = 1099.50$, $c = l_2 - l_1 = 200$ in the formula (11.8) for computing Q_3 .

Therefore,
$$Q_3 = Rs. \left[899.50 + \frac{75 - 57}{84 - 57} \times 200 \right] = Rs.1032.83$$

Similarly, for D_{7} , $\frac{7N}{10} = \frac{7 \times 100}{10} = 70$ which also lies between 57 and 84.

Thus,
$$D_7 = Rs. \left[899.50 + \frac{70 - 57}{84 - 57} \times 200 \right] = Rs.995.80$$

Lastly for
$$P_{23}$$
, $\frac{23N}{100} = \frac{23}{100} \times 100 = 23$ and as $5 < 23 < 28$, we have

$$P_{23} = \text{Rs.} [499.50 + \frac{23-5}{28-5} \times 200]$$

= Rs. 656.02

11.5 MODE

For a given set of observations, mode may be defined as the value that occurs the maximum number of times. Thus, mode is that value which has the maximum concentration of the observations around it. This can also be described as the most common value with which, even, a layman may be familiar with.

Thus, if the observations are 5, 3, 8, 9, 5 and 6, then Mo=5 as it occurs twice and all the other observations occur just once. The definition for mode also leaves scope for more than one mode. Thus sometimes we may come across a distribution having more than one mode. Such a distribution is known as a multi-modal distribution. Bi-modal distribution is one having two mode.

Furthermore, it also appears from the definition that mode is not always defined. As an example, if the marks of 5 students are 50, 60, 35, 40, 56, there is no modal mark as all the observations occur once i.e. the same number of times.

We may consider the following formula for computing mode from a grouped frequency distribution:

Mode =
$$l_1 + \left(\frac{f_0 - f_{-1}}{2f_0 - f_{-1} - f_1}\right)$$
 (11.9)

where,

 l_1 = LCB of the modal class.

i.e. the class containing mode.

f_o = frequency of the modal class

 f_{-1}^0 = frequency of the pre – modal class

 f_1 = frequency of the post modal class

C = class length of the modal class

Example 11.10: Compute mode for the distribution as described in Example. 11.3

Solution : The frequency distribution is shown below

Table 11.8 Computation of mode

Class Interval	Frequency
350 - 369	23
370 - 389	38
390 - 409	58 (f ₋₁)
410 - 429	$82 (f_0)$
430 - 449	$65(f_1)$
450 - 469	31
470 - 489	11

Going through the frequency column, we note that the highest frequency i.e. f_0 is 82. Hence, f_{-1}

11.15

= 58 and f_1 = 65. Also the modal class i.e. the class against the highest frequency is 410 – 429.

Thus
$$l_1$$
 = LCB=409.50 and c=429.50 - 409.50 = 20

Hence, applying formulas (11.9), we get

$$Mo = 409.5 + \frac{82 - 58}{2 \times 82 - 58 - 65} \times 20$$

= 421.21 which belongs to the modal class. (410 - 429)

When it is difficult to compute mode from a grouped frequency distribution, we may consider the following empirical relationship between mean, median and mode:

$$Mean - Mode = 3(Mean - Median) \dots (11.9A)$$

(11.9A) holds for a moderately skewed distribution. We also note that if y = a+bx, then $y_{mo} = a+bx_{mo}$ (11.10)

Example 11.11: For a moderately skewed distribution of marks in statistics for a group of 200 students, the mean mark and median mark were found to be 55.60 and 52.40. What is the modal mark?

Solution: Since in this case, mean = 55.60 and median = 52.40, applying (11.9A), we get the modal mark as

Mode =
$$3 \times \text{Median} - 2 \times \text{Mean}$$

= $3 \times 52.40 - 2 \times 55.60$
= $46.$

Example 11.12: If y = 2 + 1.50x and mode of x is 15, what is the mode of y?

Solution:

By virtue of (11.10), we have $y_{mo} = 2 + 1.50 \times 15$ = 24.50

11.6 GEOMETRIC MEAN AND HARMONIC MEAN

For a given set of n positive observations, the geometric mean is defined as the n-th root of the product of the observations. Thus if a variable x assumes n values $x_1, x_2, x_3, \ldots, x_n$, all the values being positive, then the GM of x is given by

G=
$$(x_1 \times x_2 \times x_3 \dots \times x_n)^{1/n}$$
 (11.11)

For a grouped frequency distribution, the GM is given by

G=
$$(x_1^{f_1} \times x_2^{f_2} \times x_3^{f_3} \dots \times x_n^{f_n})^{1/N}$$
 (11.12)

Where $N = \sum f_i$

In connection with GM, we may note the following properties:

STATISTICS

- (i) Logarithm of G for a set of observations is the Am of the logarithm of the observations; i.e. $\log G = 1/r \sum \log x_i$ (11.13)
- (ii) If all the observations assumed by a variable are constants, say K(70), then the GM of the observations is also K.
- (iii) GM of the product of two variables is the product of their GM's i.e. if z = xy, then GM of $z = (GM \text{ of } x) \times (GM \text{ of } y)$ (11.14)
- (iv) GM of the ratio of two variables is the ratio of the GM's of the two variables i.e. if z = x/y then

GM of
$$z = \frac{GM \text{ of } x}{GM \text{ of } y}$$
 (11.15)

Example 11.13: Find the GM of 3, 6 and 12.

Solution: As given $x_1=3$, $x_2=6$, $x_3=12$ and n=3.

Applying (11.11), we have $G = (3 \times 6 \times 12)^{-1/3} = (6^3)^{1/3} = 6.$

Example. 11.14: Find the GM for the following distribution:

$$x:$$
 2

Solution: According to (11.12), the GM is given by

G =
$$(x_1^{f_1} \times x_2^{f_2} \times x_3^{f_3} \times x_4^{f_4})^{1/N}$$

= $(2^2 \times 4^3 \times 8^3 \times 16^2)^{1/10}$
= $(2)^{2.50}$
= $4\sqrt{2}$
= 5.66

Harmonic Mean

For a given set of non-zero observations, harmonic mean is defined as the reciprocal of the AM of the reciprocals of the observation. So, if a variable x assumes n non-zero values x_1 , x_2 , x_3 ,...., x_n , then the HM of x is given by

$$H = \frac{n}{\sum (1/x_{i})}$$

For a grouped frequency distribution, we have

$$H = \frac{N}{\sum \left[\frac{f_i}{x_i}\right]}$$

Properties of HM

- (i) If all the observations taken by a variable are constants, say x, then the HM of the observations is also x.
- (ii) If there are two groups with n_1 and n_2 observations and H_1 and H_2 as respective HM's than the combined HM is given by

$$\frac{\frac{n_1 + n_2}{n_1}}{\frac{n_1}{H_1} + \frac{n_2}{H_2}}$$
 (11.18)

Example 11.15: Find the HM for 4, 6 and 10.

Solution: Applying (11.16), we have

$$H = \frac{3}{\frac{1}{4} + \frac{1}{6} + \frac{1}{10}}$$

$$=\frac{3}{0.25+0.17+0.10}$$

$$=5.77$$

Example 11.16: Find the HM for the following data:

Solution: Using (11.17), we get

$$H = \frac{10}{\frac{2}{2} + \frac{3}{4} + \frac{3}{8} + \frac{2}{16}}$$

$$= 4.44$$

Relation between AM, GM, and HM

For any set of positive observations, we have the following inequality:

$$AM \ge GM \ge HM$$
 (11.19)

The equality sign occurs, as we have already seen, when all the observations are equal.

Example 11.17: compute AM, GM, and HM for the numbers 6, 8, 12, 36.

Solution: In accordance with the definition, we have

$$AM = \frac{6+8+12+36}{4} = 15.5 \ 0$$

$$GM = (6 \times 8 \times 12 \times 36)^{1/4}$$
$$= (2^8 \times 3^4)^{1/4} = 12$$

$$HM = \frac{4}{\frac{1}{6} + \frac{1}{8} + \frac{1}{12} + \frac{1}{36}} = 9.93$$

The computed values of AM, GM, and HM establish (11.19).

Weighted average

When the observations under consideration have a hierarchical order of importance, we take recourse to computing weighted average, which could be either weighted AM or weighted GM or weighted HM.

Weighted AM =
$$\frac{\sum w_i x_i}{\sum w_i}$$

Weighted GM = Ante log
$$\left(\frac{\sum w_i l_i}{\sum w_i}\right)$$

$$\frac{w_i \log x_i}{\sum w_i}$$
 (11.21)

Weighted HM =
$$\frac{\sum w_i}{\sum \left(\frac{w_i}{x_i}\right)}$$

n

 n^2

Example 11.18: Find the weighted AM and weighted HM of first n natural numbers, the weights being equal to the squares of the Corresponding numbers.

Solution: As given,

Weighted AM =
$$\frac{\sum w_i x_i}{\sum w_i}$$

$$= \frac{1 \times 1^{2} + 2 \times 2^{2} + 3 \times 3^{2} + \dots + n^{2}}{1^{2} + 2^{2} + 3^{2} + \dots + n^{2}}$$

$$= \frac{1^{3} + 2^{3} + 3^{3} + \dots + n^{3}}{1^{2} + 2^{2} + 3^{2} + \dots + n^{2}}$$

$$= \frac{\left[\frac{n(n+1)}{2}\right]^{2}}{n(n+1)(2n+1)}$$

$$= \frac{3n(n+1)}{2(2n+1)}$$
Weighted HM = $\frac{\sum w_{i}}{\sum \left(\frac{w_{i}}{x_{i}}\right)}$

$$= \frac{1^{2} + 2^{2} + 3^{2} + \dots + n^{2}}{1^{2} + 2^{2} + 3^{2} + \dots + n^{2}}$$

$$= \frac{1^{2} + 2^{2} + 3^{2} + \dots + n^{2}}{1 + 2 + 3 + \dots + n}$$

$$= \frac{n(n+1)(2n+1)}{\frac{6}{n(n+1)}}$$

$$= \frac{n(n+1)(2n+1)}{\frac{6}{n(n+1)}}$$

$$= \frac{2n+1}{3}$$

A General review of the different measures of central tendency

After discussing the different measures of central tendency, now we are in a position to have a review of these measures of central tendency so far as the relative merits and demerits are concerned on the basis of the requisites of an ideal measure of central tendency which we have already mentioned in section 11.2. The best measure of central tendency, usually, is the AM. It is rigidly defined, based on all the observations, easy to comprehend, simple to calculate and amenable to mathematical properties. However, AM has one drawback in the sense that it is very much affected by sampling fluctuations. In case of frequency distribution, mean cannot be advocated for open-end classification.

Like AM, median is also rigidly defined and easy to comprehend and compute. But median is not based on all the observation and does not allow itself to mathematical treatment. However, median is not much affected by sampling fluctuation and it is the most appropriate measure of central tendency for an open-end classification.

STATISTICS 11.19

Although mode is the most popular measure of central tendency, there are cases when mode remains undefined. Unlike mean, it has no mathematical property. Mode is also affected by sampling fluctuations.

GM and HM, like AM, possess some mathematical properties. They are rigidly defined and based on all the observations. But they are difficult to comprehend and compute and, as such, have limited applications for the computation of average rates and ratios and such like things.

Example 11.19: Given two positive numbers a and b, prove that **AH=G²**. Does the result hold for any set of observations?

Solution: For two positive numbers a and b, we have,

$$A = \frac{a+b}{2}$$

$$G = \sqrt{ab}$$
And
$$H = \frac{2}{\frac{1}{a} + \frac{1}{b}}$$

$$= \frac{2ab}{a+b}$$
Thus
$$AH = \frac{a+b}{2} \times \frac{2ab}{a+b}$$

$$= ab = G^{2}$$

No, this result holds for only two positive observations or if the observations are in arithmetical progression.

Example 11.20: The AM and GM for two observations are 5 and 4 respectively. Find the two observations.

Solution: If a and b are two positive observations then as given

$$\frac{a+b}{2} = 5$$

$$\Rightarrow a+b = 10 \dots (1)$$
and $\sqrt{ab} = 4$

$$\Rightarrow ab = 16 \dots (2)$$

$$\therefore (a-b)^2 = (a+b)^2 - 4ab$$

$$= 10^2 - 4 \times 16$$

$$\Rightarrow$$
 a - b = 6 (ignoring the negative sign).....(3)

Adding (1) and (3) We get,

$$2a = 16$$

$$\Rightarrow$$
 a = 8

From (1), we get
$$b = 10 - a = 2$$

Thus, the two observations are 8 and 2.

Example 11.21: Find the mean and median from the following data:

Marks : less than 10 less than 20 less than 30

No. of Students: 5 13 23

Marks : less than 40 less than 50

No. of Students: 27 30

Also compute the mode using the approximate relationship between mean, median and mode.

Solution: What we are given in this problem is less than cumulative frequency distribution. We need to convert this cumulative frequency distribution to the corresponding frequency distribution and thereby compute the mean and median.

Table 11.9

Computation of Mean Marks for 30 students

Marks Class Interval	No. of Students (f _i)	Mid Value (x _i)	$f_{i}x_{i}$
(1)	(2)	(3)	$(4)=(2)\times(3)$
0 - 10	5	5	25
10 – 20	13 - 5 = 8	15	120
20 - 30	23 - 13 = 10	25	250
30 - 40	27 - 23 = 4	35	140
40 - 50	30 - 27 = 3	45	135
Total	30	-	670

Hence the mean mark is given by

$$\overline{x} = \frac{\sum f_i x_i}{N}$$

$$= \frac{670}{30}$$

$$= 22.33$$

Table 11.10
Computation of Median Marks

Since $\frac{N}{2} = \frac{30}{2} = 15$ lies between 13 and 23,

we have
$$l_1 = 20$$
, $N_1 = 13$, $N_u = 23$

and
$$C = l_2 - l_1 = 30 - 20 = 10$$

Thus,

Median =
$$20 + \frac{15 - 13}{23 - 13} \times 10$$

$$= 22$$

Since $Mode = 3 Median - 2\overline{x}$ approximately, we find that

$$Mode = 3x22 - 2x22.33$$
$$= 21.34$$

Example 11.22: Following are the salaries of 20 workers of a firm expressed in thousand rupees: 5, 17, 12, 23, 7, 15, 4, 18, 10, 6, 15, 9, 8, 13, 12, 2, 12, 3, 15, 14. The firm gave bonus amounting to Rs. 2000, Rs. 3000, Rs. 4000, Rs. 5000 and Rs. 6000 to the workers belonging to the salary groups 1000 – 5000, 6000 – 10000 and so on and lastly 21000 – 25000. Find the average bonus paid per employee.

Solution: We first construct frequency distribution of salaries paid to the 20 employees. The average bonus paid per employee is given by $\frac{\sum f_i x_i}{N}$ Where x_i represents the amount of bonus paid to the i^{th} salary group and f_i , the number of employees belonging to that group which would be obtained on the basis of frequency distribution of salaries.

Table 11.11 Computation of Average bonus

		No of workers	Bonus in Rupees	
Salary in thousand Rs.	Tally Mark	(f_i)	x _i	$f_i x_i$
(Class Interval)				
(1)	(2)	(3)	(4)	$(5) = (3) \times (4)$
1-5		4	2000	8000
6-10	TH	5)	3000	15000
11-15	THI IH	8	4000	32000
16-20		2 2 X	5000	10000
21-25			6000	6000
TOTAL		20	-	71000

Hence, the average bonus paid per employee

$$= \text{Rs.} \frac{71000}{20}$$

Rs. = 3550

11.7 EXERCISE

Set A

Write down the correct answers. Each question carries 1 mark.

- 1. Measures of central tendency for a given set of observations measures
 - (i) The scatterness of the observations
- (ii) The central location of the observations

(iii) Both (i) and (ii)

- (iv) None of these.
- 2. While computing the AM from a grouped frequency distribution, we assume that
 - (i) The classes are of equal length
- (ii) The classes have equal frequency
- (iii) All the values of a class are equal to the mid-value of that class
- (iv) None of these.
- 3. Which of the following statements is wrong?
 - (i) Mean is rigidly defined
 - (ii) Mean is not affected due to sampling fluctuations

	(iii)	Mean has some	e mathematical propert	ries	
	(iv)	All these			
4.	Whi	ich of the follow	ing statements is true?		
	(i)	Usually mean is	s the best measure of c	entral tendency	
	(ii)	Usually median	is the best measure of	f central tendency	
	(iii)	Usually mode is	s the best measure of o	central tendency	
	(iv)	Normally, GM	is the best measure of	central tendency	
5.	For	open-end classifi	ication, which of the fol	lowing is the best me	easure of central tendency?
	(i)	AM	(ii) GM	(iii) Median	(iv) Mode
5.	The	presence of extr	eme observations does	not affect	
	(i)	AM	(ii) Median	(iii) Mode	(iv)Any of these.
7.	In c	ase of an even n	umber of observations	which of the followi	ng is median ?
	(i)	Any of the two	middle-most value		
	(ii)	The simple aver	rage of these two midd	le values	
	(iii)	The weighted a	verage of these two m	iddle values	
	(iv)	Any of these			
3.	The	most commonly	used measure of cent	ral tendency is	
	(i)	AM	(ii) Median	(iii) Mode	(iv) Both GM and HM.
9.	Whi	ich one of the fol	llowing is not uniquely	defined?	
	(i)	Mean	(ii) Median	(iii) Mode	(iv) All of these measures
10.	Wh	ich of the follow	ing measure of the cen	tral tendency is diffi	cult to compute?
	(i)	Mean	(ii) Median	(iii) Mode	(iv)GM
11.	Wh	ich measure(s) o	f central tendency is(ar	re) considered for fir	ading the average rates?
	(i)	AM	(ii) GM	(iii) HM	(iv)Both (ii) and(iii)
12.	For	a moderately sk	ewed distribution, whi	ich of he following re	elationship holds?
	(i)	Mean – Mode =	= 3 (Mean – Median)	(ii) Median – Mode	e = 3 (Mean – Median)
	(iii)	Mean – Median	a = 3 (Mean – Mode)	(iv) Mean – Median	n = 3 (Median – Mode)
13.	Wei	ighted averages	are considered when		
	(i)	The data are no	ot classified		
	(ii)	The data are pu	it in the form of group	ed frequency distrib	ution
	(iii)	All the observat	tions are not of equal i	mportance	
	(iv)	Both (i) and (iii)).		

14.	Whi	ch of the following	results hold for a se	et of distinct positive ob	eservations?
	(i)	$AM \ge GM \ge HM$		(ii) $HM \ge GM \ge AM$	
	(iii)	AM > GM > HM		(iv) $GM > AM > HM$	
15.		en a firm registers l lency cannot be co	1	ses, which of the follow	ring measure of central
	(i)	AM	(ii) GM	(iii) Median	(iv) Mode
16.	Qua	rtiles are the values	s dividing a given se	t of observations into	
	(i)	Two equal parts	(ii) Four equal parts	s(iii) Five equal parts	(iv) None of these.
17.	Qua	rtiles can be detern	nined graphically us	sing	
	(i)	Histogram	(ii) Frequency Polys	gon (iii) Ogive	(iv) Pie chart.
18.	Whi	ch of the following	measure(s) possesse	es (possess) mathematic	cal properties?
	(i)	AM	(ii) GM	(iii) HM	(iv) All of these
19.		ich of the following ables?	g measure(s) satisfie	es (satisfy) a linear rela	ationship between two
	(i)	Mean	(ii) Median	(iii) Mode	(iv) All of these
20.		ch of he following ral values?	measures of central	tendency is based on o	only fifty percent of the
	(i) N	<i>M</i> ean	(ii) Median	(iii) Mode	(iv) Both (i) and(ii)
Set	В		जिल्ला	returnilla de la constitución de	
Wri	te do	own the correct ans	swers. Each questio	n carries 2 marks.	
1.	If th		ns 15, 20, 25 then the	sum of deviation of the	observations from their
	(i)	0	(ii) 5	(iii) -5	(iv) None of these.
2.	Wha	at is the median for	the following obser	vations?	
	5, 8,	6, 9, 11, 4.			
	(i)	6	(ii) 7	(iii) 8	(iv) None of these
3.	Wha	at is the modal valu	ie for the numbers 5	5, 8, 6, 4, 10, 15, 18, 10?	
	(i)	18	(ii) 10	(iii) 14	(iv) None of these
4.	Wha	at is the GM for the	numbers 8, 24 and	40?	
	(i)	24	(ii) 12	(iii) 8 √15	(iv) 10
5.	The	harmonic mean for	the numbers 2, 3, 5	is	
	(i)	2.00	(ii) 3.33	(iii) 2.90	(iv) $-\sqrt[3]{30}$.

6.	If th	ne AM and GM for to	wo numbers are 6.50	and 6 respectively the	n the two numbers are
	(i)	6 and 7	(ii) 9 and 4	(iii) 10 and 3	(iii) 8 and 5.
7.	If th	ne AM and HM for t	two numbers are 5 a	and 3.2 respectively the	n the GM will be
	(i)	16.00	(ii) 4.10	(iii) 4.05	(iv) 4.00.
8.	Wh	at is the value of the	e first quartile for o	bservations 15, 18, 10, 2	20, 23, 28, 12, 16?
	(i)	17	(ii) 16	(iii) 15.75	(iv) 12
9.	The	third decile for the	numbers 15, 10, 20,	, 25, 18, 11, 9, 12 is	
	(i)	13	(ii) 10.70	(iii) 11	(iv) 11.50
10.		here are two group hmetic means, then	_	d 20 observations and metic mean is	having 50 and 60 as
	(i)	55	(ii) 56	(iii) 54	(iv) 52.
11.	skil			l workers is Rs.10000 a salary is Rs.12000, then	
	(i)	40%	(ii) 50%	(iii) 60%	(iv) none of these
12.		here are two groups ervation then the cor		s harmonic means and h by	containing 15 and 13
	(i)	65	(ii) 70.36	(iii) 70	(iv) 71.
13.	Wh	at is the HM of 1,½,	, 1/3,1/		(, 1)
	(i)	n	(ii) 2n	(iii) $\frac{2}{(n+1)}$	(iv) $\frac{n(n+1)}{2}$
14.		1		f 500 km/hour and com d of the aeroplane is	nes back from B to A at
	(i)	600 km. per hour		(ii) 583.33 km. per hor	ur
	(iii)	100 $\sqrt{35}$ km. per hor	ur	(iv) 620 km. per hour.	
15.	If a		ne values 1, 2, 35 v	with frequencies as 1, 2,	, 35, then what is the
	(i)	11 3	(ii) 5	(iii) 4	(iv) 4.50
16.	Tw of y	-	are given by y= 2x –	3. If the median of x is	20, what is the median
	(i)	20	(ii) 40	(iii) 37	(iv) 35

COMMON PROFICIENCY TEST

17.	If the relationship be of u is 10, then the			u and v are g	iven by 2u +	v + 7 = 0 and	nd if the AM
	(i) 17	(ii) -	-17	(iii) – 27		(iv) 27.	
18.	If x and y are related is	d by x-y-	10 = 0 and 1	mode of x is	known to be	e 23, then th	e mode of y
	(i) 20	(ii) 1	3	(iii) 3		(iv) 23.	
19.	If GM of x is 10 and	GM of y	is 15, then t	he GM of xy	is		
	(i) 150	(ii) Lo	og 10 × Log	15 (iii) Log 1	.50	(iv) None	of these.
20.	If the AM and GM	for 10 obs	ervations ar	e both 15, th	en the value	of HM is	
	(i) Less than 15	(ii) M	ore than 15	(iii) 15	(iv)	Can not be	determined.
Set	С						
Wri	te down the correct	answers.	Each ques	tion carries !	5 marks.		
1.	What is the value of	f mean an	d median f	or the follow	ing data:		
	Marks :	5-14	15-24	25-34	35-44	45-54	55-64
	No. of Student:	10	18	32	26	14	10
	(i) 30 and 28	11		(iii) 33.68 a	国	v) 34.21 an	d 33.18
2.	The mean and mod	7	= 200	11 63 1	*		
	Class interval:	350–369			410–429	430–449	450–469
	Frequency:	15	When.	31	19	13	6
	are						
	(i) 400 and 390	(ii) 4	00.58 and 3	90 (iii) 400).58 and 394	.50 (iv) 400	and 394.
3.	The median and mo	odal profit	s for the fo	llowing data			
	Profit in '000 Rs.:	below 5	below 10	below 15	below 20	below 25	below 30
	No. of firms:	10	25	45	55	62	65
	are						
	(i) 11.60 and 11.50	0	(ii	Rs.1155	56 and Rs.1	1267	
	(iii) Rs.11875 and I	Rs.11667	(iv	v) 11.50 a	nd 11.67.		
4.	Following is an inco	omplete di	stribution h	naving modal	l mark as 44		
	Marks:	0-20	20-40	40-60	60-80	80-100	
	No. of Students :	5	18	?	12	5	
	What would be the	mean ma	rks?				
	(i) 45	(ii)	46	(iii) 47	(iv)	48	

5. The data relating to the daily wage of 20 workers are shown below:

Rs.50, Rs.55, Rs.60, Rs.58, Rs.59, Rs.72, Rs.65, Rs.68, Rs.53, Rs.50, Rs.67, Rs.58, Rs.63, Rs.69, Rs.74, Rs.63, Rs.61, Rs.57, Rs.62, Rs.64.

The employer pays bonus amounting to Rs.100, Rs.200, Rs.300, Rs.400 and Rs.500 to the wage earners in the wage groups Rs. 50 and not more than Rs. 55 Rs. 55 and not more than Rs. 60 and so on and lastly Rs. 70 and not more than Rs. 75, during the festive month of October.

What is the average bonus paid per wage earner?

5

- (i) Rs.200
- (ii) Rs.250
- (iii) Rs.285
- (iv) Rs.300
- 6. The third quartile and 65th percentile for the following data

Profits in '000 Rs.: les than 10

10-19 20-29

30-39

40-49 5

50-59

No. of firms :

18

38

20

9

2

are

(i) Rs.33500 and Rs.29184

- (ii) Rs.3
 - Rs.33000 and Rs.28680

- (iii) Rs.33600 and Rs.29000
- (iv) Rs.33250 and Rs.29250.
- 7. For the following incomplete distribution of marks of 100 pupils, median mark is known to be 32.

Marks

0 - 10

10-20

20-30

30-40 40-50

50-60

No. of Students: 10

30

_

10

What is the mean mark?

(i) 32

(ii) 31

(iii) 31.30

(iv)

31.50

8. The mode of the following distribution is Rs. 66. What would be the median wage?

Daily wages (Rs.): 30-40

10 40

(ii) Rs.64.56

50-60

60-70

70-80

80-90

No of workers :

(i) Rs.64.00

8

40**-**50 16

22

(iii)

28 –

Rs.62.32

12 (iv)

Rs.64.25

ANSWERS

Set A											
1	(ii)	2	(iii)	3	(ii)	4	(i)	5	(iii)	6	(ii)
7	(ii)	8	(i)	9	(iii)	10	(iv)	11	(iv)	12	(i)
13	(iii)	14	(iii)	15	(ii)	16	(ii)	17	(iii)	18	(iv)
19	(iv)	20	(ii)								
Set B											
1	(i)	2	(ii)	3	(ii)	4	(iii)	5	(iii)	6	(ii)
7	(iv)	8	(iii)	9	(ii)	10	(ii)	11	(i)	12	(ii)
13	(iii)	14	(ii)	15	(i)	16	(iii)	17	(iii)	18	(ii)
19	(i)	20	(iii)								
Set C											
1	(iii)	2	(iii)	3	(iii)	4	(iv)	5	(iv)	6	(i)
7	(iii)	8	(iii)		600 5						

11.8 DEFINITION OF DISPERSION

The second important characteristic of a distribution is given by dispersion. Two distributions may be identical in respect of its first important characteristic i.e. central tendency and yet they may differ on account of dispersion. The following figure shows a number of distributions having identical measure of central tendency and yet varying measure of scatterness. Obviously, distribution is having the maximum amount of dispersion.

Figure 11.1

Showing distributions with identical measure of central tendency and varying amount of dispersion.

Dispersion for a given set of observations may be defined as the amount of deviation of the observations, usually, from an appropriate measure of central tendency. Measures of dispersion may be broadly classified into

1. Absolute measures of dispersion.

2. Relative measures of dispersion.

Absolute measures of dispersion are classified into

(i) Range

(ii) Mean Deviation

(iii) Standard Deviation

(iv) Quartile Deviation

Likewise, we have the following relative measures of dispersion:

(i) Coefficient of range.

(ii) Coefficient of Mean Deviation

(iii) Coefficient of Variation

(iv) Coefficient of Quartile Deviation.

We may note the following points of distinction between the absolute and relative measures of dispersion:

I Absolute measures are dependent on the unit of the variable under consideration whereas the relative measures of dispersion are unit free.

- II For comparing two or more distributions, relative measures and not absolute measures of dispersion are considered.
- III Compared to absolute measures of dispersion, relative measures of dispersion are difficult to compute and comprehend.

Characteristics for an ideal measure of dispersion

As discussed in section 11.2 an ideal measure of dispersion should be properly defined, easy to comprehend, simple to compute, based on all the observations, unaffected by sampling fluctuations and amenable to some desirable mathematical treatment.

11.9 RANGE

For a given set of observations, range may be defined as the difference between the largest and smallest observation. Thus if L and S denote the largest and smallest observations respectively then we have

Range =
$$L - S$$

The corresponding relative measure of dispersion, known as coefficient of range, is given by

Coefficient of range =
$$\frac{L-S}{L+S} \times 100^{\circ}$$

For a grouped frequency distribution, range is defined as the difference between the two extreme class boundaries. The corresponding relative measure of dispersion is given by the ratio of the difference between the two extreme class boundaries to the total of these class boundaries, expressed as a percentage.

We may note the following important result in connection with range:

Result:

Range remains unaffected due to a change of origin but affected in the same ratio due to a change in scale i.e., if for any two constants a and b, two variables x and y are related by y = a + bx,

Then the range of y is given by

$$R_{y} = |b| \times R_{x}$$
 (11.23)

Example 11.23: Following are the wages of 8 workers expressed in rupees: 82, 96, 52, 75, 70, 65, 50, 70. Find the range and also it's coefficient.

Solution : The largest and the smallest wages are L = Rs.96 and S = Rs.50. Thus range = Rs.96 and Rs.50 = Rs.46.

Thus range =
$$Rs.96 - Rs.50 = Rs.46$$

Coefficient of range =
$$\frac{96-50}{96+50} \times 100$$

$$= 31.51$$

Example 11.24: What is the range and its coefficient for the following distribution of weights?

Weights in kgs. : 50 - 54 55 - 59 60 - 64 65 - 69 70 - 74

No. of Students: 12 18 23 10 3

Solution : The lowest class boundary is 49.50 kgs. and the highest class boundary is 74.50 kgs. Thus we have

Range = 74.50 kgs. - 49.50 kgs.

= 25 kgs.

Also, coefficient of range = $\frac{74.50 - 49.50}{74.50 + 49.50}$ 100

$$=\frac{25}{124}$$
, 100

= 20.16

Example 11.25: If the relationship between x and y is given by 2x+3y=10 and the range of x is Rs. 15, what would be the range of y?

Solution: Since 2x+3y=10

Therefore, $y = \frac{10}{3} - \frac{2}{3}x$

Applying (11.23), the range of y is given by

$$R_y = |b| \times R_x$$

= 2/3 × Rs. 15
= Rs.10.

11.10 MEAN DEVIATION

Since range is based on only two observations, it is not regarded as an ideal measure of dispersion. A better measure of dispersion is provided by mean deviation which, unlike range, is based on all the observations. For a given set of observation, mean deviation is defined as the arithmetic mean of the absolute deviation of the observations from an appropriate measure of central tendency. Hence if a variable x assumes n values $x_1, x_2, x_3...x_n$, then the mean deviation of x about an average A is given by

$$MD_A = \frac{1}{n} \sum |x_i - A|$$
(11.24)

For a grouped frequency distribution, mean deviation about A is given by

$$MD_A = \frac{1}{n} \sum |x_i - A| f_i$$
(11.25)

Where x, and f, denote the mid value and frequency of the i-th class interval and

$$N = \sum f_{i}$$

In most cases we take A as mean or median and accordingly, we get mean deviation about mean or mean deviation about median.

A relative measure of dispersion applying mean deviation is given by

Coefficient of mean deviation =
$$\frac{\text{Mean deviation about A}}{A} \times 100$$
(11.26)

Mean deviation takes its minimum value when the deviations are taken from the median. Also mean deviation remains unchanged due to a change of origin but changes in the same ratio due to a change in scale i.e. if y = a + bx, a and b being constants,

then MD of
$$y = |b| \times MD$$
 of $x = (11.27)$

Example. 11.26: What is the mean deviation about mean for the following numbers? 5, 8, 10, 10, 12, 9.

Solution:

The mean is given by

$$\overline{X} = \frac{5+8+10+10+12+9}{6} = 9$$

Table 11.12

Computation of MD about AM		
\mathbf{X}_{i}	$ \mathbf{x}_{i} - \overline{\mathbf{x}} $	
5	4	
8	1	
10	1	
10	1	
12	3	
9	0	
Total	10	

Thus mean deviation about mean is given by

$$\frac{\sum |x_{i} - \overline{x}|}{n} = \frac{10}{6} = 1.67$$

Example. 11.27: Find mean deviations about median and also the corresponding coefficient for the following profits ('000 Rs.) of a firm during a week.

82, 56, 75, 70, 52, 80, 68.

Solution:

The profits in thousand rupees is denoted by x. Arranging the values of x in an ascending order, we get

52, 56, 68, 70, 75, 80, 82.

Therefore, Me = 70. Thus, Median profit = Rs. 70,000.

Table 11.13 Computation of Mean deviation about median x.-Me 52 18 56 14 70 75 5 80 10 82 12 Total 61

Thus mean deviation about median =
$$\frac{\sum |x_i - Median|}{n}$$

= Rs.
$$\frac{61}{7} \times 1000$$

= Rs.8714.28

Coefficient of mean deviation =
$$\frac{\text{MD about median}}{\text{Median}} \times 100$$

= $\frac{8714.28}{70000} \times 100$
= 12.45

Example 11.28: Compute the mean deviation about the arithmetic mean for the following data:

Also find the coefficient of the mean deviation about the AM.

Solution: We are to apply formula (11.25) as these data refer to a grouped frequency distribution the AM is given by

$$\overline{x} = \frac{\sum f_i x_i}{N}$$

$$= \frac{5 \times 1 + 8 \times 3 + 9 \times 5 + 2 \times 7 + 1 \times 9}{5 + 8 + 9 + 2 + 1} = 3.88$$
Table 11.14

Computation of MD about the AM

x	f		$f x - \overline{x} $ $(4) = (2) \times (3)$
(1)	(2)	(3)	$(4) = (2) \times (3)$
1	5	2.88	14.40
3	8	0.88	7.04
5	9	1.12	10.08
7	2	3.12	6.24
9	1	5.12	5.12
Total	25	-	42.88

Thus, MD about AM is given by

$$\frac{\sum f \left| x - \overline{x} \right|}{N}$$

$$=\frac{42.88}{25}$$

=1.72

Coefficient of MD about its AM =
$$\frac{\text{MD about AM}}{\text{AM}} \times 100$$

= $\frac{1.72}{3.88} \times 100$
= 44.33

Example 11.29 : Compute the coefficient of mean deviation about median for the following distribution:

Weight in kgs. : 40-50 50-60 60-70 70-80 No. of persons : 8 12 20 10

Solution: We need to compute the median weight in the first stage

Table 11. 15

Computation of median weight

Weight in kg (CB)	No. of Persons (Cumulative Frequency)
40	0
50	8
60	20
70	40
80	50

Hence,
$$M = l_1 + \left(\frac{\frac{N}{2} - N_1}{N_u - N_1}\right) \times C$$

= $\left[60 + \frac{25 - 20}{40 - 20} \times 10\right] \text{Kg.} = 62.50 \text{ Kg.}$

Table 11.16
Computation of mean deviation of weight about median

weight (kgs.) (1)	mid-value (x _i) kgs. (2)	No. of persons (f _i) (3)	x _i -Me (kgs.) (4)	$f_i x_i - Me $ (kgs.) (5)=(3)×(4)
40-50	45	8	17.50	140
50-60	55	12	7.50	90
60-70	65	20	2.50	50
70-80	75	S 10	12.50	125
Total	- (50	\ <u>\</u> \\\\\\\	405

Mean deviation about median =
$$\sum_{i} f_i |x_i| - Median$$

= $\frac{405}{50}$ Kg.
= 8.10 kg.

Coefficient of mean deviation about median =
$$\frac{\text{Mean deviation about median}}{\text{Median}} \times 100$$

$$= \frac{8.10}{62.50} \times 100$$
$$= 12.96$$

Example 11.30: If x and y are related as 4x+3y+11 = 0 and mean deviation of x is 5.40, what is the mean deviation of y?

Solution: Since
$$4x + 3y + 11 = 0$$

Therefore,
$$y = \left(\frac{-11}{3}\right) + \left(\frac{-4}{3}\right)x$$

Hence MD of y=
$$|b| \times MD$$
 of x
= $\frac{4}{3} \times 5.40$
= 7.20

11.11 STANDARD DEVIATION

Although mean deviation is an improvement over range so far as a measure of dispersion is concerned, mean deviation is difficult to compute and further more, it cannot be treated mathematically. The best measure of dispersion is, usually, standard deviation which does not possess the demerits of range and mean deviation.

Standard deviation for a given set of observations is defined as the root mean square deviation when the deviations are taken from the AM of the observations. If a variable x assumes n values $x_1, x_2, x_3, \dots, x_n$ then its standard deviation(s) is given by

$$s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n}} \tag{11.28}$$

For a grouped frequency distribution, the standard deviation is given by

$$s = \sqrt{\frac{\sum f_i \left(k_i - \overline{x} \right)^2}{N}}$$
 (11.29)

(11.28) and (11.29) can be simplified to the following forms

$$\begin{split} s &= \sqrt{\frac{\sum x_i^2}{n} - \overline{x}^2} \quad \text{for unclassified data} \\ &= \sqrt{\frac{\sum f_i x_i^2}{N} - \overline{x}^2} \quad \text{for a grouped frequency distribution.} \end{split}$$

..... (11.30)

Sometimes the square of standard deviation, known as variance, is regarded as a measure of dispersion. We have, then,

Variance =
$$s^2 = \frac{\sum (x_i - \overline{x})^2}{n}$$
 for unclassified data
$$= \frac{\sum f_i (x_i - \overline{x})^2}{N}$$
 for a grouped frequency distribution(11.31)

A relative measure of dispersion using standard deviation is given by coefficient of variation (v) which is defined as the ratio of standard deviation to the corresponding arithmetic mean, expressed as a percentage.

Coefficient of Variation (CV) =
$$\frac{SD}{AM} \times 100$$
.....(11.32)

Illustration

Example 11.31: Find the standard deviation and the coefficient of variation for the following numbers: 5, 8, 9, 2, 6

Solution: We present the computation in the following table.

Table 11.17 Computation of standard deviation

X _i	x_i^2
5	25
8	64
9	81
2	4
6	36
30	$\sum x_i^2 = 210$

Applying (11.30), we get the standard deviation as

$$s = \sqrt{\frac{\sum x_i^2}{n} - \overline{x}^2}$$

$$=\sqrt{\frac{210}{5} - \left(\frac{30}{5}\right)^2}$$

$$=\sqrt{42-36}$$

$$=\sqrt{6}$$

$$= 2.45$$

The coefficient of variation is

$$CV = 100 \times \frac{SD}{AM}$$

$$=100\times\frac{2.45}{6}$$

$$= 40.83$$

Example 11.32: Show that for any two numbers a and b, standard deviation is given

by
$$\frac{|a-b|}{2}$$
.

Solution: For two numbers a and b, AM is given by $\bar{x} = \frac{a+b}{2}$

The variance is

$$s^{2} = \frac{\sum (x_{i} - \overline{x})^{2}}{2}$$

$$= \frac{\left(a - \frac{a+b}{2}\right)^{2} + \left(b - \frac{a+b}{2}\right)^{2}}{2}$$

$$= \frac{\frac{(a-b)^{2}}{4} + \frac{(a-b)^{2}}{4}}{2}$$

$$= \frac{(a-b)^{2}}{4}$$

$$\Rightarrow s = \frac{|a-b|}{2}$$

(The absolute sign is taken, as SD cannot be negative).

Example 11.33: Prove that for the first n natural numbers, SD is $\sqrt{\frac{n^2-1}{12}}$.

Solution: for the first n natural numbers AM is given by

$$\bar{x} = \frac{1+2+3+\dots+n}{n}$$

$$= \frac{n(n+1)}{2n}$$

$$= \frac{n+1}{2}$$

$$\therefore SD = \sqrt{\frac{\sum x_i^2}{n} - \bar{x}^2}$$

$$= \sqrt{\frac{1^2+2^2+3^2\dots+n}{n} - (\frac{n+1}{2})^2}$$

$$= \sqrt{\frac{n(n+1)(2n+1)}{6n} - \frac{(n+1)^2}{4}}$$

$$= \sqrt{\frac{(n+1)(4n+2-3n-3)}{12}} = \sqrt{\frac{n^2-1}{12}}$$

Thus, SD of first n natural numbers. SD =
$$\sqrt{\frac{n^2-1}{12}}$$

We consider the following formula for computing standard deviation from grouped frequency distribution with a view to saving time and computational labour:

$$S = \sqrt{\frac{\sum f_{i} d_{i}^{2}}{N} - \left(\frac{\sum f_{i} d_{i}}{N}\right)^{2}}$$
 (11.33)

Where
$$d_i = \frac{x_i - A}{C}$$

Example 11.34: Find the SD of the following distribution:

Weight (kgs.) : 50-52 52-54 54-56 No. of Students : 17 35 28

Solution:

Table 11.17 Computation of SD

56-58

15

58-60

5

Weight (kgs.) (1)	No. of Students (f_i) (2)	Mid-value (x)	d _i =x _i - 55	$f_i d_i$ (5)=(2)×(4)	$f_i d_i^2$ (6)=(5)×(4)
50-52	17	51	18 Jan 18 18 18 18 18 18 18 18 18 18 18 18 18	-34	68
52-54	35	53	-1	-35	35
54-56	28	55	0	0	0
56-58	15	57	1	15	15
58-60	5	59	2	10	20
Total	100	_	_	- 44	138

Applying (11.33), we get the SD of weight as

$$= \sqrt{\frac{\sum f_{i}d_{i}^{2}}{N} - \left(\frac{\sum f_{i}d_{i}}{N}\right)^{2}} \times C$$

$$= \sqrt{\frac{138}{100} - \frac{(-44)^{2}}{100}} \times 2kgs.$$

$$= \sqrt{1.38 - 0.1936} \times 2 \text{ kgs.}$$

= 2.18 kgs.

Properties of standard deviation

- I. If all the observations assumed by a variable are constant i.e. equal, then the SD is zero. This means that if all the values taken by a variable x is k, say , then s=0. This result applies to range as well as mean deviation.
- II. SD remains unaffected due to a change of origin but is affected in the same ratio due to a change of scale i.e., if there are two variables x and y related as y = a+bx for any two constants a and b, then SD of y is given by

$$s_{y} = |b| s_{x}$$
(11.34)

III. If there are two groups containing n_1 and n_2 observations, $\bar{\chi}_1$ and $\bar{\chi}_2$ as respective AM's, s_1 and s_2 as respective SD's, then the combined SD is given by

$$s = \sqrt{\frac{n_1 s_1^2 + n_2 s_2^2 + n_1 d_1^2 + n_2 d_2^2}{n_1 + n_2}}$$
 (11.35)

where,

$$d_1 = \overline{x}_1 - \overline{x}$$

$$d_2 = \overline{x}_2 - \overline{x}$$

and

$$\overline{x} = \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2}{n_1 + n_2} = \text{combined AM}$$

This result can be extended to more than 2 groups. For $x(7^2)$ groups, we have

$$s = \sqrt{\frac{\sum n_{i} s_{i}^{2} + \sum n_{i} d_{i}^{2}}{\sum n_{i}}}$$
 (11.36)

With

$$d_i = x_i - \overline{x}$$

and

$$\overline{x} = \frac{\sum n_i \overline{x}_i}{\sum n_i}$$

Where

$$\bar{x}_1 = \bar{x}_2$$
 (11.35) is reduced to

$$s = \sqrt{\frac{n_1 s_1^2 + n_2 s_2^2}{n_1 + n_2}}$$

Example 11.35: If AM and coefficient of variation of x are 10 and 40 respectively, what is the variance of (15-2x)?

Solution: let y = 15 - 2x

Then applying (11.34), we get,

$$\mathbf{s}_{\mathbf{y}} = 2 \times \mathbf{s}_{\mathbf{x}} \tag{1}$$

As given $cv_x = coefficient$ of variation of x = 40 and $\overline{x} = 10$

This
$$cv_x = \frac{s_x}{x} \times 100$$

$$\Rightarrow 40 = \frac{S_x}{10} \times 100$$

$$\Rightarrow$$
 $S_x = 4$

From (1),
$$S_y = 2 \times 4 = 8$$

Therefore, variance of $(15-2x) = S_y^2 = 64$

Example 11.36: Compute the SD of 9, 5, 8, 6, 2.

Without any more computation, obtain the SD of

Sample I	- 1,	-5,	-2,	-4,	-8,
Sample II	90,	50,	80,	60,	20,
Sample III	23,	15,	21,	17,	9.

Solution:

The SD of the original set of observations is given by

$$s = \sqrt{\frac{\sum x_i^2}{n} - \left(\frac{\sum x_i}{n}\right)^2}$$
$$= \sqrt{\frac{210}{5} - \left(\frac{30}{5}\right)^2}$$
$$= \sqrt{42 - 36}$$
$$= \sqrt{6}$$
$$= 2.45$$

If we denote the original observations by x and the observations of sample I by y, then we have

$$y = -10 + x$$

$$y = (-10) + (1) x$$

$$\therefore S_y = |1| \times S_x$$

$$= 1 \times 2.45$$

$$= 2.45$$

In case of sample II, x and y are related as

$$= 0 + (10)x$$

$$\therefore s_y = |10| \times s_x$$

$$= 10 \times 2.45$$

$$= 24.50$$
And lastly, $y = (5) + (2)x$

$$\Rightarrow s_y = 2 \times 2.45$$

$$= 4.90$$

Y = 10x

Solution: As given $n_1 = 60$, $\bar{x}_1 = 45$, $s_1 = 2$, $n_2 = 40$, $\bar{x}_2 = 55$, $s_2 = 3$. Thus the combined mean is given by

$$\overline{x} = \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2}{n_1 + n_2}$$

$$= \frac{60 \times 45 + 40 \times 55}{60 + 40}$$

$$= 49$$
Thus
$$d_1 = \overline{x}_1 - \overline{x} = 45 - 49 = -4$$

$$d_2 = \overline{x}_2 - \overline{x} = 55 - 49 = 6$$

Applying (11.35), we get the combined SD as

$$s = \sqrt{\frac{n_1 s_1^2 + n_2 s_2^2 + n_1 d_1^2 + n_2 d_2^2}{n_1 + n_2}}$$

$$s = \sqrt{\frac{60 \times 2^2 + 40 \times 3^2 + 60 \times (-4)^2 + 40 \times 6^2}{60 + 40}}$$

$$= \sqrt{30}$$
$$= 5.48$$

Example 11.38: The mean and standard deviation of the salaries of the two factories are provided below:

Factory	No. of Employees	Mean Salary	SD of Salary
A	30	Rs.4800	Rs.10
В	20	Rs. 5000	Rs.12

- i) Find the combined mean salary and standard deviation of salary.
- ii) Examine which factory has more consistent structure so far as satisfying its employees are concerned.

Solution: Here we are given

$$n_1 = 30, \ \bar{x}_1 = Rs.4800, \ s_1 = Rs.10,$$

 $n_2 = 20, \ \bar{x}_2 = Rs.5000, \ s_2 = Rs.12$

i)
$$\frac{30 \times \text{Rs.} 4800 + 20 \times \text{Rs.} 5000}{30 + 20} = \text{Rs.} 4800$$

$$d_1 = \overline{x}_1 - \overline{x} = \text{Rs.} 4,800 - \text{Rs.} 4880 = -\text{Rs.} 80$$

$$d_2 = \overline{x}_2 - \overline{x} = \text{Rs.} 5,000 - \text{Rs.} 4880 = -\text{Rs.} 120$$

hence, the combined SD in rupees is given by

$$s = \sqrt{\frac{30 \times 10^2 + 20 \times 12^2 + 30 \times (-80)^2 + 20 \times 120^2}{30 + 20}}$$
$$= \sqrt{9717.60}$$
$$= 98.58$$

thus the combined mean salary and the combined standard deviation of salary are Rs.4880 and Rs.98.58 respectively.

ii) In order to find the more consistent structure, we compare the coefficients of variation of the two factories. Letting $CV_A = 100 \times \frac{S_A}{\overline{X}_A}$ and $CV_B = 100 \times \frac{S_B}{\overline{X}_B}$

We would say factory A is more consistent

if $CV_A < CV_B$. Otherwise factory B would be more consistent.

Now
$$CV_A = 100 \times \frac{s_A}{\overline{x}_A} = 100 \times \frac{s_1}{\overline{x}_1} = \frac{100 \times 10}{4800} = 0.21$$

and
$$CV_B = 100 \times \frac{S_B}{\overline{X}_B} = 100 \times \frac{S_2}{\overline{X}_2} = \frac{100 \times 12}{5000} = 0.24$$

Thus we conclude that factory A has more consistent structure.

Example 11.39: A student computes the AM and SD for a set of 100 observations as 50 and 5 respectively. Later on, she discovers that she has made a mistake in taking one observation as 60 instead of 50. What would be the correct mean and SD if

- i) The wrong observation is left out?
- ii) The wrong observation is replaced by the correct observation?

Solution: As given, n = 100, $\bar{x} = 50$, S = 5

Wrong observation = 60(x), correct observation = 50(V)

$$\bar{x} = \frac{\sum x_i}{n}$$

$$\Rightarrow \sum x_i = n\bar{x} = 100 \times 50 = 5000$$
and
$$s^2 = \frac{\sum x_i^2}{n} - \bar{x}^2$$

$$\Rightarrow \sum x_i^2 = n(\bar{x}^2 + s^2) = 100(50^2 + 5^2) = 252500$$

i) Sum of the 99 observations = 5000 - 60 = 4940

AM after leaving the wrong observation = 4940/99 = 49.90

Sum of squares of the observation after leaving the wrong observation

$$= 252500 - 60^2 = 248900$$

Variance of the 99 observations = $248900/99 - (49.90)^2$

$$= 24.13$$

$$\therefore$$
 SD of 99 observations = 4.91

ii) Sum of the 100 observations after replacing the wrong observation by the correct observation = 5000 - 60 + 50 = 4990

$$AM = \frac{4990}{100} = 49.90$$

Corrected sum of squares =
$$252500 + 50^2 - 60^2 = 251400$$

Corrected SD =
$$\sqrt{\frac{251400}{100} - (49.90)^2}$$

= $\sqrt{45.99}$
= 6.78

11.12 QUARTILE DEVIATION

Another measure of dispersion is provided by **quartile deviation** or **semi - inter -quartile** range which is given by

$$Q_{d} = \frac{Q_{3} - Q_{1}}{2}$$
 (11.37)

A relative measure of dispersion using quartiles is given by coefficient of quartile deviation which is

Coefficient of quartile deviation =
$$\frac{Q_3 - Q_1}{Q_3 + Q_1} \times 100$$
(11.38)

Quartile deviation provides the best measure of dispersion for open-end classification. It is also less affected due to sampling fluctuations. Like other measures of dispersion, quartile deviation remains unaffected due to a change of origin but is affected in the same ratio due to change in scale.

Example 11.40 : Following are the marks of the 10 students : 56, 48, 65, 35, 42, 75, 82, 60, 55, 50. Find Quartile deviation and also its coefficient.

Solution:

After arranging the marks in an ascending order of magnitude, we get 35, 42, 48, 50, 55, 56, 60, 65, 75, 82

First Quartile
$$(Q_1) = \frac{(n+1)}{4}$$
th observation

$$=\frac{(10+1)}{4}$$
th observation

=
$$2^{nd}$$
 observation + $0.75 \times$ difference between the third and the 2^{nd} observation.

$$=42 + 0.75 \times (48 - 42)$$

$$= 46.50$$

Third Quartile
$$(Q_3) = \frac{3(n+1)}{4}$$
 th observation

$$= 65 + 0.25 \times 10$$

$$= 67.50$$

Thus applying (11.37), we get the quartile deviation as

$$\frac{Q_3 - Q_1}{2} = \frac{67.50 - 46.50}{2} = 10.50$$

Also, using (11.38), the coefficient of quartile deviation is

$$= \frac{Q_3 - Q_1}{Q_3 + Q_1} \times 100$$

$$= \frac{67.50 - 46.50}{67.50 + 46.50} \times 100$$

$$= 18.42$$

Example 11.41: If the quartile deviation of x is 6 and 3x + 6y = 20, what is the quartile deviation of y?

$$3x + 6y = 20$$

$$\Rightarrow y = \left(\frac{20}{6}\right) + \left(\frac{-3}{6}\right)x$$

Therefore, quartile deviation of

Example 11.42: Find an appropriate measures of dispersion from the following data:

Daily wages (Rs.) : upto 20 20-40 40-60 60-80 80-100 No. of workers : 5 11 14 7 3

Solution: Since this is an open-end classification, the appropriate measure of dispersion would be quartile deviation as quartile deviation does not taken into account the first twenty five percent and the last twenty five per cent of the observations.

Table 11.19
Computation of Quartile

Daily wages in Rs. (Class boundary)	No. of workers (less than cumulative frequency)
a	0
20	5
40	16
60	30
80	37
100	40

Here a denotes the first Class Boundary

$$Q_1 = Rs. \left[20 + \frac{10 - 5}{16 - 5} \times 20 \right] = Rs. 29.09$$

$$Q_3 = Rs. 60$$

Thus quartile deviation of wages is given by

$$\frac{Q_3 - Q_1}{2}$$
Rs. 60-Rs. 29.09
2
Rs. 15.46

Example 11.43: The mean and variance of 5 observations are 4.80 and 6.16 respectively. If three of the observations are 2,3 and 6, what are the remaining observations?

Solution: Let the remaining two observations be a and b, then as given

$$\frac{2+3+6+a+b}{5} = 4.80$$

$$\Rightarrow 11+a+b = 24$$

$$\Rightarrow a+b = 13 \qquad (1)$$

and
$$\frac{2^2 + a^2 + b^2 + 3^2 + 6^2}{5} - (4.80)^2$$

$$\Rightarrow \frac{49 + a^2 + b^2}{5} - 23.04 = 6.16$$

$$\Rightarrow$$
 49 + a^2 + b^2 =146

$$\Rightarrow$$
 $a^2 + b^2 = 97$ (2)

From (1), we get
$$a = 13 - b$$
(3)

Eliminating a from (2) and (3), we get

$$(13 - b)^2 + b^2 = 97$$

$$\Rightarrow 169 - 26b + 2b^2 = 97$$

$$\Rightarrow b^2 - 13b + 36 = 0$$

$$\Rightarrow \qquad (b-4)(b-9) = 0$$

$$\Rightarrow$$
 b = 4 or 9

From (3),
$$a = 9$$
 or 4

Thus the remaining observations are 4 and 9.

Example 11.44: After shift of origin and change of scale, a frequency distribution of a continuous variable with equal class length takes the following form of the changed variable (d):

35

-2

2

If the mean and standard deviation of the original frequency distribution are 54.12 and 2.1784 respectively, find the original frequency distribution.

Solution: we need find out the origin A and scale C from the given conditions.

Since
$$d_i = \frac{x_i - A}{C}$$

$$\Rightarrow$$
 $x_i = A + Cd_i$

once A and C are known, the mid-values x_i 's would be known. Finally, we convert the mid-values to the corresponding class boundaries by using the formula:

$$LCB = x_i - C/2$$

and
$$UCB = x_i + C/2$$

On the basis of the given data, we find that

$$\Sigma f_i d_i = -44$$
, $\Sigma f_i d_i^2 = 138$ and $N = 100$

Hence s =
$$\sqrt{\frac{\sum f_i d_i^2}{N} - \left(\frac{\sum f_i d_i}{N}\right)^2} \times C$$

$$\Rightarrow \qquad 2.1784 = \sqrt{\frac{138}{100} - \left(\frac{-44}{100}\right)^2} \times C$$

$$\Rightarrow$$
 2.1784 = $\sqrt{1.38 - 0.1936} \times C$

$$\Rightarrow$$
 2.1784 = 1.0892×C

$$\Rightarrow$$
 $C = 2$

Further,
$$\bar{x} = A + \frac{\sum f_i d_i}{N} \times C$$

$$\Rightarrow \qquad 54.12 = A + \frac{-44}{100} \times 2$$

$$\Rightarrow \qquad 54.12 = A - 0.88$$

$$\Rightarrow$$
 A = 55

Thus
$$x_i = A + Cd_i$$

$$\Rightarrow \qquad x_{i} = 55 + 2d_{i}$$

Table 11.20
Computation of the Original Frequency Distribution

		x _i =	class interval
d_{i}	f_{i}	55 + 2d _i	$x_i \pm \frac{C}{2}$
-2	17	51	50-52
-1	35	53	52-54
0	28	55	54-56
1	15	57	56-58
2	5	59	58-60

Example 11.45: Compute coefficient of variation from the following data:

Age : under 10 under 20 under 30 under 40 under 50 under 60

No. of persons

Dying : 10 | 18 | 30 | 45 | 60 | 80

Solution: What is given in this problem is less than cumulative frequency distribution. We need first convert it to a frequency distribution and then compute the coefficient of variation.

Table 11.21
Computation of coefficient of variation

Age in years class Interval	No. of persons dying (f _i)	Mid-value (x _i)	$\frac{d_i}{x_i - 25}$ $\frac{10}{10}$	$f_i^{}d_i^{}$	$f_i d_i^2$
0-10	10	5	-2	-20	40
10-20	18-10= 8	15	-1	-8	8
20-30	30-18=12	25	0	0	0
30-40	45-30=15	35	1	15	15
40-50	60-45=15	45	2	30	60
50-60	80-60=20	55	3	60	180
Total	80	-	_	77	303

The AM is given by:

$$\bar{x} = A + \frac{\sum f_i d_i}{N} \times C$$

$$= \left(25 + \frac{77}{80} \times 10\right) \text{ years}$$

= 34.63 years

The standard deviation is

$$S = \sqrt{\frac{\sum f_i d_i^2}{N} - \left(\frac{\sum f_i d_i}{N}\right)^2} \times C$$

$$= \sqrt{\frac{303}{80} - \left(\frac{77}{80}\right)^2} \times 10 \text{ years}$$

$$= \sqrt{3.79 - 0.93} \times 10 \text{ years}$$

= 16.91 years

Thus the coefficient of variation is given by

$$V = \frac{S}{\overline{x}} \times 100$$

$$=\frac{16.91}{34.63}\times100$$

= 48.83

Example 11.46: you are given the distribution of wages in two factors A and B

Wages in Rs.	:	100-200	200-300	300-400	400-500	500-600	600-700
No. of							
workers in A	:	8	12	17	10	2	1
No. of							
workers in B	:	6	18	25	12	2	2

State in which factory, the wages are more variable.

Solution:

As explained in example 11.36, we need compare the coefficient of variation of A(i.e. v_A) and of B (i.e v_B).

If $v_A > v_B$, then the wages of factory A would be more variable. Otherwise, the wages of factory B would be more variable where

$$V_A = 100 \times \frac{s_A}{\overline{x}_A}$$
 and $V_B = 100 \times \frac{s_B}{\overline{x}_B}$

Table 11.22

Computation of coefficient of variation of wages of Two Factories A and B

Wages in rupees	Mid-value x	d=	No. of workers of A f_A	No. of workers of B	$f_A d$	$f_A^{}d^2$	$f_B d$	$f_B d^2$
(1)	(2)	(3)	(4)	(5)	$(6)=(3)\times(4)$	$(7)=(3)\times(6)$	$(8)=(3)\times(5)$	$(9)=(3)\times(8)$
100-200	150	-2	8	6	-16	32	-12	24
200-300	250	-1	12	18	-12	12	-18	18
300-400	350	0	17	25	0	0	0	0
400-500	450	1	10	12	10	10	12	12
500-600	550	2	2	2	4	8	4	8
600-700	650	3	1	2	3	9	6	18
Total	_	-	50	65	-11	71	- 8	80

For Factory A

$$\bar{x}_A = Rs. \left(350 + \frac{-11}{50} \times 100\right) = Rs.328$$

$$S_A = Rs.\sqrt{\frac{71}{50} - \left(\frac{-11}{50}\right)^2} \times 100 = Rs.117.12$$

$$\therefore V_{A} = \frac{S_{A}}{\overline{x}_{A}} \times 100 = 35.71$$

For Factory B

$$\overline{x}_B = \text{Rs.} \left(350 + \frac{-8}{65} \times 100\right) = \text{Rs.} 337.69$$

$$S_B = Rs.\sqrt{\frac{80}{65} - \left(\frac{-8}{65}\right)^2} \times 100$$

$$= Rs.110.25$$

$$\therefore V_B = \frac{110.25}{337.69} \times 100 = 32.65$$

As $\boldsymbol{V}_{\!\scriptscriptstyle A}\!>\boldsymbol{V}_{\!\scriptscriptstyle B}$, the wages for factory A is more variable.

Comparison between different measures of dispersion

We may now have a review of the different measures of dispersion on the basis of their relative merits and demerits. Standard deviation, like AM, is the best measure of dispersion. It is rigidly defined, based on all the observations, not too difficult to compute, not much affected by sampling fluctuations and moreover it has some desirable mathematical properties. All these merits of standard deviation make SD as the most widely and commonly used measure of dispersion.

Range is the quickest to compute and as such, has its application in statistical quality control. However, range is based on only two observations and affected too much by the presence of extreme observation(s).

Mean deviation is rigidly defined, based on all the observations and not much affected by sampling fluctuations. However, mean deviation is difficult to comprehend and its computation is also time consuming and laborious. Furthermore, unlike SD, mean deviation does not possess mathematical properties.

Quartile deviation is also rigidly defined, easy to compute and not much affected by sampling fluctuations. The presence of extreme observations has no impact on quartile deviation since quartile deviation is based on the central fifty-percent of the observations. However, quartile deviation is not based on all the observations and it has no desirable mathematical properties. Nevertheless, quartile deviation is the best measure of dispersion for open-end classifications.

11.13 EXERCISE

Set A

Write down the correct answers. Each question carries one mark.

- 1. Which of the following statements is correct?
 - (a) Two distributions may have identical measures of central tendency and dispersion.
 - (b) Two distributions may have the identical measures of central tendency but different measures of dispersion.
 - (c) Two distributions may have the different measures of central tendency but identical measures of dispersion.
 - (d) All the statements (a), (b) and (c).
- 2. Dispersion measures
 - (a) The scatterness of a set of observations
 - (b) The concentration of a set of observations
 - (c) Both a) and b)
 - (d) Neither a) and b).

3. When it comes to comparing two or more distributions we consider							
	(a)	Absolute measures of dispersion	(b) Relative measures of dispersion				
	(c)	Both a) and b)	(d) Either (a) or (b).				
4.	Which one is difficult to compute?						
	(a)	Relative measures of dispersion	(b) Absolute measures of dispersion				
	(c)	Both a) and b)	(d) Range				
5.	Wh	Which one is an absolute measure of dispersion?					
	(a)	Range	(b) Mean Deviation				
	(c)	Standard Deviation	(d) All these measures				
6.	Wh	ich measure of dispersion is the quickest t	to compute?				
	(a)	Standard deviation	(b) Quartile deviation				
	(c)	Mean deviation	(d) Range				
7.	Wh	Which measures of dispersions is not affected by the presence of extreme observations?					
	(a)	Range	(b) Mean deviation				
	(c)	Standard deviation	(d) Quartile deviation				
8.	Wh	Which measure of dispersion is based on the absolute deviations only?					
	(a)	Standard deviation	(b) Mean deviation				
	(c)	Quartile deviation	(d) Range				
9.	Wh	ich measure is based on only the central f	ifty percent of the observations?				
	(a)	Standard deviation	(b) Quartile deviation				
	(c)	Mean deviation	(d) All these measures				
10.	Which measure of dispersion is based on all the observations?						
	(a)	Mean deviation	(b) Standard deviation				
	(c)	Quartile deviation	(d) (a) and (b) but not (c)				
11.	The	appropriate measure of dispersions for o	pen – end classification is				
	(a)	Standard deviation	(b) Mean deviation				
	(c)	Quartile deviation	(d) All these measures.				
12.	The	e most commonly used measure of dispersa	ion is				
	(a)	Range	(b) Standard deviation				
	(c)	Coefficient of variation	(d) Quartile deviation.				

13.	Wh	ich measure of disp	persion has some desir	able mathematical pro	operties?		
	(a)	Standard deviation	n	(b) Mean deviation			
	(c)	Quartile deviation		(d) All these measur	es		
14.			pany remains the same these ten months wou		iths, then the standard		
	(a)	Positive	(b) Negative	(c) Zero	(d) (a) or (c)		
15.		ich measure of disp r combining severa	•	for finding a pooled	measure of dispersion		
	(a)	Mean deviation		(b) Standard deviati	ion		
	(c)	Quartile deviation		(d) Any of these			
16.	A s	hift of origin has no	impact on				
	(a) Range			(b) Mean deviation			
	(c)	Standard deviatio	n	(d) All these and qu	artile deviation.		
17.	The	range of 15, 12, 10	, 9, 17, 20 is				
	(a)	5	(b) 12	(c) 13	(d) 11.		
18.	The	standard deviation	of, 10, 16, 10, 16, 10,	10, 16, 16 is			
	(a)	4	(b) 6	(c) 3	(d) 0.		
19.	For	any two numbers S	SD is always	5			
	(a)	Twice the range	Wall Manager	(b) Half of the range			
	(c)	Square of the rang	ge	(d) None of these.			
20.	If all the observations are increased by 10, then						
	(a)	SD would be incre	eased by 10				
	(b)	Mean deviation w	ould be increased by 1	10			
	(c)	Quartile deviation	would be increased b	y 10			
	(d)	(d) All these three remain unchanged.					
21.	If a	ll the observations a	are multiplied by 2, the	en			
	(a)	New SD would be	also multiplied by 2				
	(b)	New SD would be	half of the previous S	SD			
	(c)	New SD would be	increased by 2				
	(d) New SD would be decreased by 2.						

Set B

Write down the correct answers. Each question carries two marks.

1.	What is the coeffici	ent of range fo	r the following	wages of 8 work	ers?
	Rs.80, Rs.65, Rs.90,	Rs.60, Rs.75,	Rs.70, Rs.72, Rs.	.85.	
	(a) Rs.30	(b) Rs.20	(c)	30	(d) 20
2.	If R _x and R _y denote a what would be the			where x and y are	related by 3x+2y+10=0,
	(a) $R_x = R_y$	(b) $2 R_x =$	$3 R_y$ (c)	$3 R_x = 2 R_y$	(d) $R_x = 2 R_y$
3.	What is the coeffici	ent of range fo	r the following	distribution?	
	Class Interval: 1	0-19 20-	29 30-39	40-49	50-59
	Frequency:	11 2	5 16	7	3
	(a) 22	(b) 50	(c)	72.46	(d) 75.82
4.	If the range of x is	2, what would	be the range of	-3x +50?	
	(a) 2	(b) 6		-6	(d) 44
5.	What is the value of	of mean deviati	on about mean	for the following	g numbers?
	5, 8, 6, 3, 4. (a) 5.20	(b) 7.20	(c)	1.44	(d) 2.23
6.	What is the value of 50, 60, 50, 50, 60, 6	1694	ハマダ南マップル	1.689/	g observations?
	(a) 5	(b) 7	(c)	35	(d) 10
7.	The coefficient of m	nean deviation	about mean for	the first 9 natura	al numbers is
	(a) 200/9	(b) 80	(c)	400/9	(d) 50.
8.	If the relation between 12, then the mean of	· · · · · · · · · · · · · · · · · · ·	•	the mean deviati	ion about mean for x is
	(a) 7.20	(b) 6.80	(c)	20	(d) 18.80.
9.		•			an and mean deviation of mean deviation of y
	(a) -5	(b) 12	(c)	50	(d) 4.
10.	The mean deviation (a) 8/11	about mode in ab		s 4/11, 6/11, 8/1 6/11	1, 9/11, 12/11, 8/11 is (d) 5/11.
11.	What is the standar (a) $\sqrt{14}$	rd deviation of (b) $\sqrt{42}$		5, 10, 10? 4.50	(d) 8

11.57

12.	If the mean and SI	O of x are a and b	respective	ely, then the	\geq SD of $\frac{x}{x}$	$\frac{-a}{b}$ is	
	(a) -1	(b) 1		(c) ab		(d) a/b.	
13.	What is the coeffice 53, 52, 61, 60, 64.	ient of variation	of the follo	owing numb	oers?		
	(a) 8.09	(b) 18.08		(c) 20.23		(d) 20.45	
14.	If the SD of x is 3,	what us the vari	iance of (5-	-2x)?			
	(a) 36	(b) 6		(c) 1		(d) 9	
15.	If x and y are relat	ed by 2x+3y+4 =	0 and SD	of x is 6, the	en SD of	y is	
	(a) 22	(b) 4		(c) $\sqrt{5}$		(d) 9.	
4.6			0 1-4-	1	T		
16.	The quartiles of a	variable are 45, 5	2 and 65 r	espectively.	Its quarti	lle deviation	İS
	(a) 10	(b) 20		(c) 25		(d) 8.30.	
17.	If x and y are relat deviation of y is	ed as 3x+4y = 20	and the q	uartile devia	ation of x	is 12, then th	ne quartile
	(a) 16	(b) 14		(c) 10		(d) 9.	
18.	If the SD of the 1st	n natural numb	ers is 2, the	en the value	of n mus	st be	
	(a) 2	(b) 7	Management	(c) 6		(d) 5.	
19.	If x and y are relatively, then				f x are kn	nown to be 5	and 10
	(a) 25	(b) 30		(c) 40		(d) 20.	
20. 7	The mean and SD f	or a, b and 2 are	3 and 1 re	espectively,	The value	of ab would	l be
	(a) 5	(b) 6		(c) 12		(d) 3.	
Set	С						
Wri	te down the correct	t answer. Each q	uestion car	ries 5 mark	S.		
1.	What is the mean	deviation about 1	mean for t	he following	g distribu	tion?	
	Variable: 5	5 10	15	20	25	30	
	Frequency: 3	4	6	5	3	2	
	(a) 6.00	(b) 5.93		(c) 6.07		(d) 7.20	

What is the	mean de	viation abo	out medi	an for the	following	data?			-
X: 3	5	7		9	11	,	13	15	
F: 2	8	9		16	14		7	4	
(a) 2.50		(b) 2.46	6	(c) 2	2.43		(d) 2.37	7	
. What is the deviation from		nt of mean	deviation	on for the	following	g distrik	oution o	f height	? Take
Height in in	ches:	60-62	63-6	5	66-68	6	69 - 71		72-74
No. of stude	ents:	5		22			28	17	3
(a) 2.30 inch	nes	(b) 3.45		(c) 3	3.82		(d) 2.48	3 inches	
. The mean d	eviation o	of weight a	bout me	edian for th	ne follow	ing data	a:		
Weight (lb)	: 131-1	40 141-1	150 1	51-160	161-17	0 1	71-180	181-1	.90
No. of perso		8		13	15		6	5	
Is given by									
(a) 10.97		(b) 8.23	3 Carrientes	(c) 8	9.63		(d) 11.4	45.	
What is the 200 persons		deviation	from the	following	data rela	ting to	the age	distribu	tion of
Age (year)	: 20	30	Control of the second	40	50	60	7	0	80
No. of peop	le: 13	28		31	46	39	2	23	20
(a) 15.29		(b) 16.8	37	(c) 1	18.00		(d) 17.5	52	
. What is the	coefficien	t of variati	ion for t	he followir	ng distrib	ution o	f wages?		
Daily Wages	s (Rs.) 30	0 - 40	40 - 50	50 - 60	60 –	70 7	0 - 80	80 - 90)
No. of work	ers	17	28	21		15	13	6	
(a) Rs.14.73	(b) 14.73		(c) 2	6.93		(0	d) 20.82	
. Which of the		0 1	nies A aı	nd B is mo	re consis	tent so	far as tl	ne paym	nent of
Dividend pa	id by A:	5	9	6	12	15	10	8	10
Dividend pa	id by B:	4	8	7	15	18	9	6	6
(a) A	-	(b) B		(c) Both (a) and (b)		(d) Nei	ther (a)	nor (b)
. The mean a these observ	vations ha	ave mean	and SD				-		
(a) 16		(b) 25		(c) 4	Ŀ		(d) 2		
If there comes	los of sim	oc 20 and	20 harra		EE and 6	0 and -		16	d 0E

9. If two samples of sizes 30 and 20 have means as 55 and 60 and variances as 16 and 25 respectively, then what would be the SD of the combined sample of size 50?

(a) 5.00

(b) 5.06

(c) 5.23

(d) 5.35

- 10. The mean and SD of a sample of 100 observations were calculated as 40 and 5.1 respectively by a CA student who took one observation as 50 instead of 40 by mistake. The current value of SD would be
 - (a) 4.90

- (b) 5.00
- (c) 4.88
- (d) 4.85.
- 11. The value of appropriate measure of dispersion for the following distribution of daily wages

Wages (Rs.):

Below 30 30-39

40-49

50-59

60-79 Above 80

No. of workers

5

7

18

32 28

10

is given by

(a) Rs.11.03

(b) Rs.10.50

(c) 11.68

(d) Rs.11.68.

ANSW	VERS			/		Manne					
Set A					5/1						
1	(d)	2	(a)	3	(b)	4	(a)	5	(d)	6	(d)
7	(d)	8	(b)	9	(b)	10	(d)	11	(c)	12	(b)
13	(a)	14	(c)	15	(b)	16	(d)	17	(d)	18	(c)
19	(b)	20	(d)	21	(a)						
Set B											
1	(d)	2	(c)	3	(c)	4	(b)	5	(c)	6	(c)
7	(c)	8	(a)	9	(b)	10	(b)	11	(b)	12	(b)
13	(a)	14	(a)	15	(b)	16	(a)	17	(d)	18	(b)
19	(c)	20	(a)								
Set C											
1	(c)	2	(d)	3	(b)	4	(a)	5	(b)	6	(c)
7	(a)	8	(c)	9	(b)	10	(b)	11	(a)		

ADDITIONAL QUESTION BANK

1.	The no. of measures of	f central tendency is		
	(a) two	(b) three	(c) four	(d) five
2.	The words "mean" or	"average" only refer	to	
	(a) A.M	(b) G.M	(c) H.M	(d) none
3.	——— is the mo	ost stable of all the m	easures of central tender	ncy.
	(a) G.M	(b) H.M	(c) A.M	(d) none.
4.	Mean is of ——— ty	rpes.		
	(a) 3	(b) 4	(c) 8	(d) 5
5.	Weighted A.M is related	ed to		
	(a) G.M	(b) frequency	(c) H.M	(d) none.
6.	Frequencies are also ca	alled weights.		
	(a) True	(b) false	(c) both	(d) none
7.	The algebraic sum of c	leviations of observat	ions from their A.M is	
	(a) 2	(b) -1	(c) 1	(d) 0
8.	G.M of a set of n obser	rvations is the	root of their product.	
	(a) n/2 th	(b) (n+1)th	(c) nth	(d) (n -1)th
9.	The algebraic sum of c	leviations of 8,1,6 from	m the A.M viz.5 is	
	(a) -1	(b) 0	(c) 1	(d) none
10.	G.M of 8, 4,2 is			
	(a) 4	(b) 2	(c) 8	(d) none
11.	——— is the	reciprocal of the A.M	of reciprocal of observa	tions.
	(a) H.M	(b) G.M	(c) both	(d) none
12.	A.M is never less than	G.M		
	(a). True	(b) false	(c) both	(d) none
13.	G.M is less than H.M			
	(a) true	(b) false	(c) both	(d) none
14.	The value of the middle	emost item when the	y are arranged in order o	f magnitude is called
	(a) standard deviation	(b) mean	(c) mode	(d) median
15.	Median is unaffected b	y extreme values.		
	(a) true	(b) false	(c) both	(d) none

11.61

16.	Median of 2,5,8,4,9,6,7	1 is		
	(a) 9	(b) 8	(c) 5	(d) 6
17.	The value which occur	s with the maximum	frequency is called	
	(a) median	(b) mode	(c) mean	(d) none
18.	In the formula Mode =	$L_1 + (d_1 X c) / (d_1 + c)$	d ₂)	
	d ₁ is the difference of f	requencies in the mo	dal class & the ———	—— class.
	(a) preceding	(b) following	(c) both	(d) none
19.	In the formula Mode =	$L_1 + (d_1 X c) / (d_1 + c)$	d_2)	
	d ₂ is the difference of f	requencies in the mo	dal class & the ———	class.
	(a) preceding	(b) following	(c) both	(d) none
20.	In formula of median f	or grouped frequency	y distribution N is	
	(a) total frequency(c) frequency		(b) frequency density (d) cumulative frequen	су
21.	When all observations	occur with equal free	quency — does	not exit.
	(a) median	(b) mode	(c) mean	(d) none
22.	Mode of the observati	ons 2,5,8,4,3,4,4,5,2,4	4 is	
	(a) 3	(b) 2	(c) 5	(d) 4
23.	For the observations 5	,3,6,3,5,10,7,2, there	are modes	5.
	(a) 2	(b) 3	(c) 4	(d) 5
24.	of a set	of observations is de	efined to be their sum, o	divided by the no. of
	observations.			
	(a) H.M	(b) G.M	(c) A.M	(d) none
25.	Simple average is some	etimes called		
	(a) weighted average(c) relative average		(b) unweighted average (d) none	e
26.	When a frequency distraction weights.	ribution is given, the f	frequencies of values are	themselves treated as
	(a) True	(b) false	(c) both	(d) none
27.	Each different value is	considered only once	e for	
	(a) simple average(c) both		(b) weighted average(d) none	
28.	Each value is considered	ed as many times as i	it occurs for	
	(a) simple average(c) both		(b) weighted average (d) none	

29.	Multiplying the values sum of products by the		corresponding weights a	and then dividing the
	(a) simple average(c) both		(b) weighted average(d) none	
30.	Simple & weighted ave	erage are equal only	when all the weights are	equal.
	(a) True	(b) false	(c) both	(d) none
31.	The word " average " to	ısed in "simple avera	ge " and "weighted avera	age " generally refers
	(a) median	(b) mode	(c) A.M , G.M or H.M	(d) none
32.	——— average i	s obtained on dividin	g the total of a set of obse	ervations by their no.
	(a) simple	(b) weighted	(c) both	(d) none
33.	Frequencies are genera	lly used as		
	(a) range	(b) weights	(c) mean	(d) none
34.	The total of a set of obs	servations is equal to	the product of their no.	and the
	(a) A.M	(b) G.M	(c) A.M	(d) none
35.	The total of the deviation	ons of a set of observ	ations from their A.M is	always
	(a) 0	(b) 1	(c) -1	(d) none
36.	Deviation may be posit	tive or negative or ze	ro	
	(a) true	(b) false	(c) both	(d) none
37.	The sum of the squares the deviations are taken		t of observations has the	smallest value, when
	(a) A.M	(b) H.M	(c) G.M	(d) none
38.	For a given set of obser	rvations H.M is less th	nan G.M	
	(a) true	(b) false	(c) both	(d) none
39.	For a given set of observer	rvations A.M is great	er than G.M	
	(a) true	(b) false	(c) both	(d) none
40.	Calculation of G.M is r	nore difficult than		
	(a) A.M	(b) H.M	(c) median	(d) none
41.	——— has a limite	ed use		
	(a) A.M	(b) G.M	(c) H.M	(d) none
42.	A.M of 8,1,6 is			
	(a) 5	(b) 6	(c) 4	(d) none

11.63

43.	——— can be calc	ulated from a freque	ncy distribution with ope	en end intervals
	(a) Median	(b) Mean	(c) Mode	(d) none
14.	The values of all items	are taken into consid	leration in the calculation	n of
	(a) median	(b) mean	(c) mode	(d) none
45.	The values of extreme	items do not influence	e the average in case of	
	(a) median	(b) mean	(c) mode	(d) none
46.	In a distribution with a concentration of the dis	U 1	lerate skewness to the rig	ght, it is closer to the
	(a) mean	(b) median	(c) both	(d) none
1 7.	If the variables $x \& z$ constants, then z bar =		z = ax + b for each $x =$	x_{i} where a & b are
	(a) true	(b) false	(c) both	(d) none
48.	G.M is defined only wh	nen		
	(a) all observations ha	ive the same sign and	none is zero	
	(b) all observations ha	ive the different sign	and none is zero	
	(c) all observations ha	ive the same sign and	one is zero	
	(d) all observations ha	ive the different sign	and one is zero	
1 9.	——— is useful in a	veraging ratios, rates	and percentages.	
	(a) A.M	(b) G.M	(e) H.M	(d) none
50.	G.M is useful in constr	uction of index numb	er.	
	(a) true	(b) false	(c) both	(d) none
51.	More laborious numeri	cal calculations invol	ves in G.M than A.M	
	(a) True	(b) false	(c) both	(d) none
52.	H.M is defined when n	o observation is		
	(a) 3	(b) 2	(c) 1	(d) 0
53.	When all values occur	with equal frequency	, there is no	
	(a) mode	(b) mean	(c) median	(d) none
54.	cannot be tre	ated algebraically		
	(a) mode	(b) mean	(c) median	(d) none
55.	For the calculation of – distribution.	, the data	must be arranged in the	form of a frequency
	(a) median	(b) mode	(c) mean	(d) none

COMMON PROFICIENCY TEST

56.	——— is equal to th	e value correspondin	g to cumulative frequen	cy
	(a) mode	(b) mean	(c) median	(d) none
57.	———— is the value	e of the variable corre	esponding to the highest	frequency
	(a) mode	(b) mean	(c) median	(d) none
58.	The class in which mod	de belongs is known	as	
	(a) median class	(b) mean class	(c) modal class	(d) none
59.	The formula of mode i	s applicable if classes	are of ——— width	١.
	(a) equal	(b) unequal	(c) both	(d) none
60.	For calculation of ——	— we have to constr	ruct cumulative frequenc	y distribution
	(a) mode	(b) median	(c) mean	(d) none
61.	For calculation of ——	— we have to constr	uct a grouped frequency	distribution
	(a) median	(b) mode	(c) mean	(d) none
62.	Relation between mear	n, median & mode is	The state of the s	
			(b) mean - median = 3 (d) mean - mode = 3 (
63.	When the distribution	is symmetrical, mear	, median and mode	
	(a) coincide	(b) do not coincide	(c) both	(d) none
64.	Mean, median & mode	e are equal for the	armid D	
	(a) Binomial distribut(c) both	ion	(b) Normal distribution (d) none	
65.	1 ,		n observed that the three ey the approximate rela	
	(a) very skew	(b) not very skew	(c) both	(d) none
66.	——— divides t	the total no. of observ	ations into two equal pa	arts.
	(a) mode	(b) mean	(c) median	(d) none
67.	Measures which are us are collectively known		tion, the observations int	o a fixed no. of parts
	(a) partition values	(b) quartiles	(c) both	(d) none
68.	The middle most value	of a set of observation	ons is	
	(a) median	(b) mode	(c) mean	(d) none
69.	The no. of observations	s smaller than ——	— is the same as the no	. larger than it.
	(a) median	(b) mode	(c) mean	(d) none

70.	——— is the value of	of the variable corresp	oonding to cumulative fr	equency N /2
	(a) mode	(b) mean	(c) median	(d) none
71.	——— divide	the total no. observa	tions into 4 equal parts.	
	(a) median	(b) deciles	(c) quartiles	(d) percentiles
72.	——— quartil	e is known as Upper	quartile	
	(a) First	(b) Second	(c) Third	(d) none
73.	Lower quartile is			
	(a) first quartile	(b) second quartile	(c) upper quartile	(d) none
74.	The no. of observations lower and middle quant		quartile is the same as t	he no. lying between
	(a) true	(b) false	(c) both	(d) none
75.	are used for	measuring central ter	ndency, dispersion & ske	ewness.
	(a) Median	(b) Deciles	(c) Percentiles	(d) Quartiles.
76.	The second quartile is	known as		
	(a) median	(b) lower quartile	(c) upper quartile	(d) none
77.	The lower & upper qua	artiles are used to de	fine	
	(a) standard deviation(c) both	n	(b) quartile deviation (d) none	
78.	Three quartiles are use	d in		
	(a) Pearson's formula(c) both		(b) Bowley's formula (d) none	
79.	Less than First quartile	, the frequency is eq	ual to	
	(a) N /4	(b) 3N /4	(c) N /2	(d) none
80.	Between first & second	quartile, the frequer	acy is equal to	
	(a) $3N/4$	(b) N /2	(c) N /4	(d) none
81.	Between second & upp	er quartile, the frequ	ency is equal to	
	a) 3N/4	(b) N /4	(c) N/2	(d) none
82.	Above upper quartile,	the frequency is equa	al to	
	(a) N /4	(b) N /2	(c) 3N /4	(d) none
83.	Corresponding to first	quartile, the cumulat	ive frequency is	
	(a) N /2	(b) N / 4	(c) 3N /4	(d) none

COMMON PROFICIENCY TEST

84.	Corresponding to secon	nd quartile, the cum	ılative frequency is	
	(a) N /4	(b) 2 N / 4	(c) 3N /4	(d) none
85.	Corresponding to upper	er quartile, the cumu	lative frequency is	
	(a) 3N/4	(b) N / 4	(c) 2N /4	(d) none
86.	The values which divid	de the total no. of obs	servations into 10 equal p	parts are
	(a) quartiles	(b) percentiles	(c) deciles	(d) none
87.	There are ———— o	deciles.		
	(a) 7	(b) 8	(c) 9	(d) 10
88.	Corresponding to first	decile, the cumulativ	e frequency is	
	(a) N/10	(b) 2N /10	(c) 9N /10	(d) none
89.	Fifth decile is equal to			
	(a) mode	(b) median	(c) mean	(d) none
90.	The values which divid	de the total no. of obs	servations into 100 equal	parts is
	(a) percentiles	(b) quartiles	(c) deciles	(d) none
91.	Corresponding to secon	nd decile, the cumula	ntive frequency is	
	(a) N /10	(b) 2N /10	(c) 5N /10	(d) none
92.	There are ——— pe			
	(a) 100	(b) 98	(c) 97	(d) 99
93.	10 th percentile is equal	to		
	(a) 1st decile	(b) 10 th decile	(c) 9 th decile	(d) none
94.	50 th percentile is know.	n as		
	(a) 50 th decile	(b) 50 th quartile	(c) mode	(d) median
95.	20^{th} percentile is equal	to		
	(a) 19 th decile	(b) 20 th decile	(c) 2 nd decile	(d) none
96.	(3 rd quartile —— 1 st qu	artile)	/ 2 is	
	(a) skewness	(b) median	(c) quartile deviation	(d) none
97.	1st percentile is less that	nn 2 nd percentile.		
	(a) true	(b) false	(c) both	(d) none
98.	25 th percentile is equal	to		
	(a) 1st quartile	(b) 25 th quartile	(c) 24 th quartile	(d) none
99.	90 th percentile is equal	to		
	(a) 9 th quartile	(b) 90 th decile	(c) 9 th decile	(d) none

11.67

100.	1st decile is greater than	n 2 nd decile		
	(a) True	(b) false	(c) both	(d) none
101.	Quartile deviation is a	measure of dispersion	n.	
	(a) true	(b) false	(c) both	(d) none
102.	To define quartile devia	ation the		
	(a) lower & middle qua (c) upper & middle qua		(b) lower & upper quar (d) none are used.	tiles
102.	Calculation of quartiles	, deciles, percentiles	may be obtained graphic	cally from
	(a) Frequency Polygon	(b) Histogram	(c) Ogive	(d) none
103.	7 th decile is the abscissa	of that point on the	Ogive whose ordinate is	1
	(a) 7N/10	(b) 8N /10	(c) 6N /10	(d) none
104.	Rank of median is	Committee of the Commit		
	(a) $(n+1)/2$	(b) (n+1)/4	(c) $3(n + 1)/4$	(d) none
105.	Rank of 1st quartile is			
	(a) $(n+1)/2$	(b) (n+1)/4	(c) $3(n + 1)/4$	(d) none
106.	Rank of 3rd quartile is			
	(a) $3(n+1)/4$	(b) $(n+1)/4$	(c) (n + 1)/2	(d) none
107.	Rank of k th decile is	्रिक सन्तेष		
	(a) $(n+1)/2$	(b) (n+1)/4	(c) $(n + 1)/10$	(d) $k(n + 1)/10$
108.	Rank of k th percentile	is		
	(a) $(n+1)/100$	(b) $k(n+1)/10$	(c) $k(n + 1)/100$	(d) none
109.	is equal simple frequency distri	_	ng to cumulative freque	ency $(N + 1)/2$ from
	(a) Median	(b) 1st quartile	(c) 3 rd quartile	(d) 4 th quartile
110.	——— is equal to the simple frequency distri		ng to cumulative freque	ency $(N + 1)/4$ from
	(a) Median	(b) 1st quartile	(c) 3 rd quartile	(d) 1st decile
111.	is equal to the simple frequency distri	-	ng to cumulative frequen	(N + 1)/4 from
	(a) Median	(b) 1st quartile	(c) 3 rd quartile	(d) 1st decile
112.	is equal to the simple frequency distri		g to cumulative frequenc	k = (N + 1)/10 from
	(a) Median	(b) kth decile	(c) kth percentile	(d) none

COMMON PROFICIENCY TEST

113.	is equal to the simple frequency distri		g to cumulative frequ	nency $k(N + 1)/100$ from
	(a) kth decile	(b) kth percentile	(c) both	(d) none
114.	For grouped frequency cumulative frequency N		—— is equal to the	e value corresponding to
	(a) median	(b) 1 st quartile	(c) 3 rd quartile	(d) none
115.	For grouped frequency cumulative frequency N		—— is equal to the	e value corresponding to
	(a) median	(b) 1st quartile	(c) 3 rd quartile	(d) none
116.	For grouped frequency cumulative frequency 3		—— is equal to the	e value corresponding to
	(a) median	(b) 1st quartile	(c) 3 rd quartile	(d) none
117.	For grouped frequency cumulative frequency l	distribution kN/10	is equal to the	e value corresponding to
	(a) median	(b) kth percentile	(c) kth decile	(d) none
118.	For grouped frequency cumulative frequency k	distribution kN /100	is equal to the	e value corresponding to
	(a) kth quartile	(b) kth percentile	(c) kth decile	(d) none
119.	In Ogive, abscissa corre			
	(a) median	(b) 1 st quartile	(c) 3 rd quartile	(d) none
120.	In Ogive, abscissa corre	esponding to ordinate	N/4 is	
	(a) median	(b) 1st quartile	(c) 3 rd quartile	(d) none
121.	In Ogive, abscissa corre	esponding to ordinate	e 3N/4 is	
	(a) median	(b) 3 rd quartile	(c) 1st quartile	(d) none
122.	In Ogive, abscissa corre	esponding to ordinate	e ———— is kth	decile.
	(a) $kN/10$	(b) $kN/100$	(c) $kN/50$	(d) none
123.	In Ogive, abscissa corre	esponding to ordinate	e — is kth	percentile.
	(a) kN/10	(b) $kN/100$	(c) $kN/50$	(d) none
124.	For 899 999 391 384 59 Rank of median is	00 480 485 760 111 24	40	
	(a) 2.75	(b) 5.5	(c) 8.25	(d) none
125.	For 333 999 888 777 66 Rank of 1st quartile is	66 555 444		
	(a) 3	(b) 1	(c) 2	(d) 7

11.69

For 333 999 888 777 10 Rank of 3^{rd} quartile is	000 321 133		
(a) 7	(b) 4	(c) 5	(d) 6
Price per kg.(Rs.): 45	50 35 Kgs.Purchased	: 100 40 60 Total frequen	ncy is
(a) 300	(b) 100	(c) 150	(d) 200
0	, .		mate
What is the suitable for	rm of average in this	case——	
(a) A.M	(b) G.M	(c) H.M	(d) none
average no. of eggs per	rupee for all the ma		
(a) A.M	(b) G.M	(c) H.M	(d) none
population of India at	the middle of the pe	eriod by averaging these	
What is the suitable for	m of average in this	case—	
(a) A.M	(b) G.M	(c) H.M	(d) none
.——— is least at	ffected by sampling f	luctions.	
(a) Standard deviation(c) both	A Best	(b) Quartile deviation (d) none	
."Root –Mean Square D	eviation from Mean	is	
(a) Standard deviation		(b) Quartile deviation	
(c) both		(d) none	
Standard Deviation is			
(a) absolute measure	(b) relative measure	(c) both	(d) none
Coefficient of variation	is		
(a) absolute measure	(b) relative measure	(c) both	(d) none
.——— deviation	is called Semi—inte	rquartile range.	
(a) Percentile	(b) Standard	(c) Quartile	(d) none
quartiles.	ation is defined as ha	alf the difference between	n the lower & upper
(a) Quartile	(b) Standard	(c)both	(d) none
	Rank of 3rd quartile is (a) 7 Price per kg.(Rs.): 45 (a) 300 The length of a rod is rethe length of the rod by What is the suitable for (a) A.M A person purchases 5 reaverage no. of eggs perform of average in this (a) A.M You are given the popur population of India at assuming a constant rawhat is the suitable for (a) A.M (a) Standard deviation (c) both "Root –Mean Square Deviation is (a) absolute measure Coefficient of variation (a) absolute measure ———————————————————————————————————	(a) 7 (b) 4 Price per kg.(Rs.) : 45 50 35 Kgs.Purchased (a) 300 (b) 100 The length of a rod is measured by a tape 10 the length of the rod by averaging these 10 What is the suitable form of average in this (a) A.M (b) G.M A person purchases 5 rupees worth of eggs average no. of eggs per rupee for all the material form of average in this case— (a) A.M (b) G.M You are given the population of India for the population of India at the middle of the peassuming a constant rate of increase of pop What is the suitable form of average in this (a) A.M (b) G.M ———————————————————————————————————	Rank of 3rd quartile is (a) 7 (b) 4 (c) 5 Price per kg.(Rs.): 45 50 35 Kgs.Purchased: 100 40 60 Total frequency (a) 300 (b) 100 (c) 150 The length of a rod is measured by a tape 10 times. You are to estimate the length of the rod by averaging these 10 determinations. What is the suitable form of average in this case— (a) A.M (b) G.M (c) H.M A person purchases 5 rupees worth of eggs from 10 different market average no. of eggs per rupee for all the markets taken together. When the form of average in this case— (a) A.M (b) G.M (c) H.M You are given the population of India for the courses of 1981 & 1991 population of India at the middle of the period by averaging these assuming a constant rate of increase of population. What is the suitable form of average in this case— (a) A.M (b) G.M (c) H.M ———————————————————————————————————

COMMON PROFICIENCY TEST

137	Quartile Deviation for	the data 1, 3, 4, 5, 6,	, 6, 10 is	
	(a) 3	(b) 1	(c) 6	(d)1.5
138	Coefficient of Quartile	Deviation is		
	(a) (Quartile Deviation(c) (Quartile Deviation	•	(b) (Quartile Deviation (d) none	x 100)/Mean
139	Mean for the data 6,4,	1,6,5,10,3 is		
	(a) 7	(b) 5	(c) 6	(d) none
140	.Coefficient of variation	= (Standard Deviati	on x 100)/Mean	
	(a) true	(b) false	(c) both	(d) none
141	. If mean = 5, Standard	deviation = 2.6 then to	the coefficient of variatio	n is
	(a) 49	(b) 51	(c) 50	(d) 52
142	. If median = 5, Quartile	deviation = 1. 5 ther	the coefficient of quarti	le deviation is
	(a) 33	(b) 35	(c) 30	(d) 20
143	.A.M of 2, 6, 4, 1, 8, 5,	2 is		
	(a) 4	(b) 3	(c) 4	(d) none
144	. Most useful among all	measures of dispersion	on is	
	(a) S.D	(b) Q.D	(c) Mean deviation	(d) none
145	For the observations 6,	, 4, 1, 6, 5, 10, 4, 8 R	ange is	
	(a) 10	(b) 9	(c) 8	(d) none
146	. A measure of central to	endency tries to estim	nate the	
	(a) central value	(b) lower value	(c) upper value	(d) none
147	. Measures of central ter	ndency are known as		
	(a) differences	(b) averages	(c) both	(d) none
148	.Mean is influenced by	extreme values.		
	(a) true	(b) false	(c) both	(d) none
149	Mean of 6, 7, 11, 8 is			
	(a) 11	(b) 6	(c) 7	(d) 8
150	.The sum of differences	between the actual v	values and the arithmetic	mean is
	(a) 2	(b) -1	(c) 0	(d) 1
151	. When the algebraic sur the figure of arithmetic		the arithmetic averages a correct.	are not equal to zero
	(a) is	(b) is not	(c) both	(d) none

11.71

152	.In the problem							
	No. of shirts:	30—32	33—35		36—38	39—4	11	42—44
	No. of persons:	15	14		42	27		18
	The assumed mean is							
	(a) 34	(b) 37		(c) 4	0		(d) 43	
153	.In the problem							
	Size of items:	1—3	3—8		8—15	15—2	26	
	Frequency:	5	10		16	15		
	The assumed mean is							
	(a) 20.5	(b) 2	((c) 1	1.5		(d) 5.5	
154	The average of a series item within a series is l		ng averag	ges, e	ach of which	is base	ed on a	certain no. of
	(a) moving average(c) simple average			(b) v (d) n	veighted aver one	age		
155	.——— averages is	used for smo	oothening	g a ti	me series.			
	(a) moving average(c) simple average			(b) v (d) n	veighted aver	age		
156	Pooled Mean is also cal	lled	The last					
	(a) Mean (b) C	Geometric Me	ean चुप्तेषु	(c) C	rouped Mea	n	(d) non	e
157	. Half of the nos. in an o			s les	s than the —			and half will
	(a) mean, median	(b)median,	median	(c) n	node ,mean		(d) non	ie.
158	The median of 27, 30,	26, 44, 42, 5	1, 37 is					
	(a) 30	(b) 42		(c) 4	4		(d) 37	
159	. For an even no. of valu	es the media	n is the					
	(a) average of two mid (c) both	dle values		(b) n (d) n	niddle value one			
160	In the case of a continuindicates class interval	-			on, the size	of the		——— item
	(a) (n-1)/2 th	(b) $(n+1)/2$	th	(c) n	/2th		(d) non	ie
161	The deviations from me to other measures of ce			— if	negative sign	ns are	ignored	as compared
	(a) minimum	(b) maximum	m	(c) sa	ame		(d) non	ie

COMMON PROFICIENCY TEST

162.	62. Ninth Decile lies in the class interval of the						
	(a) $n/9^{th}$	(b) $9n/10^{th}$	(c) $9n/20^{th}$	(d) none item.			
163.	Ninety Ninth Percentile	e lies in the class inte	rval of the				
	(a) $99n/100^{th}$	(b) 99n/10 th	(c) 99n/200 th	(d) none item.			
164.	———— is the value densest.	e of the variable at v	which the concentration	of observation is the			
	(a) mean	(b) median	(c) mode	(d) none			
165.	Height in cms: 60—	62 63—65 66—68 69					
	No. of students: 15	118 142 1	27 18				
	Modal group is						
	(a) 66—68	(b) 69—71	(c) 63—65	(d) none			
166.	A distribution is said to value in the ————		en the frequency rises &	falls from the highest			
	(a) unequal	(b) equal	(c) both	(d) none			
167.	always	s lies in between the	arithmetic mean & mode	2.			
	(a) G.M	(b) H.M	(c) Median	(d) none			
168.	Logarithm of G.M is th	ne of	the different values.				
	(a) weighted mean	(b) simple mean	(c) both	(d) none			
169.	is not mu						
	(a) A.M	(b) G.M	(c) H.M	(d) none			
170.	The data 1,2,4,8,16 are	in					
	(a) Arithmetic progress	sion	(b) Geometric progressi	on			
	(c) Harmonic progressi	ion	(d) none				
171.	&	can not be calc	ulated if any observation	is zero.			
	(a) G.M & A.M	(b) H.M & A.M	(c) H.M & G. M	(d) None.			
172.	&	— are called ratio as	verages.				
	(a) H.M & G.M	(b) H. M & A.M	(c) A.M & G.M	(d) none			
173.	is a good	substitute to a weig	hted average.				
	(a) A.M	(b) G.M	(c) H.M	(d) none			
174.	For ordering shoes of va	arious sizes for resale,	a ——— size will	be more appropriate.			
	(a) median	(b) modal	(c) mean	(d) none			

11.73

175.	——— is called	a positional measure		
	(a) mean	(b) mode	(c) median	(d) none
176.	50% of actual values w	ill be below & 50% o	f will be above ———	
	(a) mode	(b) median	(c) mean	(d) none
177.	Extreme values have –	effect on mo	de.	
	(a) high	(b) low	(c) no	(d) none
178.	Extreme values have –	effect on me	dian.	
	(a) high	(b) low	(c) no	(d) none
179.	Extreme values have –	effect on A.N	Л.	
	(a) greatest	(b) least	(c) medium	(d) none
180.	Extreme values have –	effect on H.N	Л.	
	(a) least	(b) greatest	(c) medium	(d) none
181.	——— is used w	vhen representation v	alue is required & distrib	oution is asymmetric.
	(a) mode	(b) mean	(c) median	(d) none
182.	——— is used w	hen most frequently o	occurring value is require	d (discrete variables).
	(a) mode	(b) mean	(c) median	(d) none
183.	— is used w	when rate of growth of	or decline required.	
	(a) mode	(b) A.M	(c) G.M	(d) none
184.	In ———, the distrib	oution has open-end	classes.	
	(a) median	(b) mean	(c) standard deviation	(d) none
185.	In ———, the distrib	oution has wide rang	e of variations.	
	(a) median	(b) mode	(c) mean	(d) none
186.	In ——— the quantitie	s are in ratios.		
	(a) A.M	(b) G.M	(c) H.M	(d) none
187.	is used who	en variability has als	o to be calculated.	
	(a) A.M	(b) G.M	(c) H.M	(d) none
188.	is used who	en the sum of deviati	ons from the average sh	ould be least.
	(a) Mean	(b) Mode	(c) Median	(d) None
189.	is used who	en sampling variabili	ty should be least.	
	(a) Mode	(b) Median	(c) Mean	(d) none
190.	is used who	en distribution patter	n has to be studied at va	arying levels.
	(a) A.M	(b) Median	(c) G.M	(d) none

COMMON PROFICIENCY TEST

191	.The average discovers			
			(b) variability in uniformity of distribution(d) none	
192	.The average has releva	nce for		
	(a) homogeneous popul	llation	(b) heterogeneous popul (d) none	ılation
193	.The correction factor is	applied in		
	(a) inclusive type of dis (c) both	stribution	(b) exclusive type of dis (d) none	tribution
194.	."Mean has the least sa	mpling variability" p	rove the mathematical p	roperty of mean
	(a) True	(b) false	(c) both	(d) none
195	."The sum of deviations mean		ero" — prove the math	nematical property of
	(a) True	(b) false	(c) both	(d) none
196	."The mean of the two mean	samples can be comb	oined"—prove the math	nematical property of
	(a) True	(b) false	(c) both	(d) none
197	."Choices of assumed r property of mean	(I Will the love	the actual mean"— pro	ve the mathematical
	(a) True	(b) false	(c) both	(d) none
198.	."In a moderately asymi median & mode"— pro		ean can be found out from property of mean	n the given values of
	(a) True	(b) false	(c) both	(d) none
199.	The mean wages of two companies are equally		ual. It signifies that the	workers of both the
	(a) True	(b) false	(c) both	(d) none
200	The mean actual wage that factory A pays mo	2	0 whereas in factory B it than factory B.	is Rs.5500. It signifies
	(a) True	(b) false	(c) both	(d) none
201	Mean of 0, 3, 5, 6, 7, 9	, 12, 0, 2 is		
	(a) 4.9	(b) 5.7	(c) 5.6	(d) none
202	Median of 15, 12, 6, 1	3, 12, 15, 8, 9 is		
	(a) 13	(b) 8	(c) 12	(d) 9
203	Median of 0.3, 5, 6, 7,	9, 12, 0, 2 is		
	(a) 7	(b) 6	(c) 3	(d) 5

204. Mode of 0,3,5,6,7,9,12,0,2 is				
(a) 6	(b) 0	(c) 3	(d) 5	
205. Mode 0f 15,	12,5,13,12,15,8,8,9,9,	10,15 is		
(a)15	(b) 12	(c) 8	(d) 9	
206. Median of 4	40,50,30,20,25,35,30,3	0,20,30 is		
(a) 25	(b) 30	(c) 35	(d) none	
207. Mode of 40,	50,30,20,25,35,30,30,	20,30 is		
(a) 25	(b) 30	(c) 35	(d) none	
208.———	- in particular helps	in finding out the varia	ability of the data.	
(a) Dispersion	on (b) Media	n (c) Mode	(d) None	
209. Measures of	central tendency are	called averages of the	order.	
(a) 1 st	(b) 2 nd	(c) 3 rd	(d) none	
210. Measures of	dispersion are called	averages of the	-order.	
(a) 1 st	(b) 2 nd	(c) 3 rd	(d) none	
211. In measuring	g dispersion, it is nec	essary to know the am	ount of — & the degree of	
(a) variation (c) median,	188	(b) variation (d) none	n, median	
212. The amount	of variation is design		measure of dispersion.	
(a) relative	(b) absolu	ite (c) both	(d) none	
213. The degree of	of variation is designated	ated as — m	neasure of dispersion.	
(a) relative	(b) absolu	ite (c) both	(d) none	
			with varying size or no. of items, measures can be used.	
(a) absolute	(b) relativ	re (c) both	(d) none	
215. The relation	Relative range = Abs	solute range/Sum of th	e two extremes. is	
(a) True	(b) false	(c) both	(d) none	
216. The relation	Absolute range = Re	lative range/Sum of th	e two extremes is	
(a) True	(b) false	(c) both	(d) none	
217. In quality co	ontrol ——— is use	d as a substitute for sta	andard deviation.	
(a) mean de	viation (b) media	n (c) range	(d) none	
218.	- factor helps to kno	w the value of standar	d deviation.	
(a) Correction	on (b) Range	(c) both	(d) none	

219.——— is o	extremely sensitiv	ve to the	size of the	sample		
(a) Range	(b) Mean	(c) Median		(d) Mod	le
220. As the sample size in	icreases, ———	—— als	o tends to	increase.		
(a) Range	(b) Mean	(0) Median		(d) Mod	le
221. As the sample size in	creases, range al	lso tends	to increase	e though n	ot propor	tionately.
(a) true	(b) false	(c) both		(d) none	e.
222. As the sample size in	creases, range al	so tends	to			
(a) decrease	(b) increase	(c) same		(d) none	e
223. The dependence of ra	inge on extreme	items car	n be avoide	ed by adop	oting	
(a) standard deviatio	n (b) mean devi	iation (c) quartile d	deviation	(d) none	e
224. Quartile deviation is	called					
(a) inter quartile rang	ge (b) quartile ra	nge (c) both		(d) none	e
225. When 1^{st} quartile = 2	$0, 3^{rd}$ quartile = 3	30, the va	lue of qua	rtile deviat	tion is	
(a) 7	(b) 4	5 6) -5		(d) 5	
226. $(Q_3 - Q_1)/(Q_3 + Q_1)$) is		1 \ 1 \ 1 \ 1			
(a) coefficient of Qua(c) coefficient of Stan) coefficien l) none	t of Mean	Deviation	n
227. Standard deviation is	denoted by	कि ब्रिप्तेषु जा	D			
(a) square of sigma	(b) sigma	(c) squ	are root of	sigma	(d) none	e
228. The mean of standard	d deviation is kn	own as				
(a) variance(c) mean deviation		•) standard l) none	deviation		
229. Mean of 25, 32, 43,	53, 62, 59, 48, 3	1, 24, 33	is			
(a) 44	(b) 43	(c) 42		(d) 41	
230. For the following free	quency distributi	on				
Class interval:	10—20	20—30	30—40	40—50	50—60	60—70
Frequency: assumed mean is	20	9	31	18	10	9
(a) 55	(b) 45	(0) 35		(d) none	e
231. The value of the stan	dard deviation d	loes not d	depend upo	on the choi	ice of the	origin.
(a) True	(b) false	(0) both		(d) none	e
232. Coefficient of standar	d deviation is					
(a) S.D/Median	(b) S.D/Mean	ı (c) S.D/Mod	le	(d) n	one

222	The realise of the stands	مطم النبي مصنونية	noo if any one of the obs	omrationa ia ahanaad
233			nge if any one of the obs	<u> </u>
	(a). True	(b) false	(c) both	(d) none
234	. When all the values ar	e equal then variance	e & standard deviation v	vould be
	(a) 2	(b) -1	(c) 1	(d) 0
235	For values lie close to	the mean, the standar	rd deviations are	
	(a) big	(b) small	(c) moderate	(d) none
236	If the same amount is deviation shall	added to or subtrac	ted from all the values,	variance & standard
	(a) changed	(b) unchanged	(c) both	(d) none
237	If the same amount is or decrease by the —		d from all the values, th	e mean shall increase
	(a) big	(b) small	(c) same	(d) none
238	If all the values are m would be multiple of t		ne quantity, the ———	& also
	(a) mean, deviations(c) mean, mode		(b) mean , median (d) median , deviations	
239	. For a moderately non-s	ymmetrical distributio	on, Mean deviation = 4/5	of standard deviation
	(a) True	(b) false	(c) both	(d) none
240	For a moderately non-s	symmetrical distributi	on, Quartile deviation =	Standard deviation/3
	(a) True	(b) false	(c) both	(d) none
241	For a moderately non- Standard deviation/3		tion, Probable error of	standard deviation =
	(a) True	(b) false	(c) both	(d) none
242	.Quartile deviation = P	robable error of Stand	dard deviation.	
	(a) True	(b) false	(c) both	(d) none
243	.Coefficient of Mean De	eviation is		
	(a) Mean deviation x 10	00/Mean or mode	(b) Standard deviation x	100/Mean or median
	(c) Mean deviation x 1	00/Mean or median	(d) none	
244	.Coefficient of Quartile	Deviation = Quartile	e Deviation x 100/Media	n
	(a) True	(b) false	(c) both	(d) none
245	.Karl Pearson's measure	e gives		
	(a) coefficient of Mean(c) coefficient of variat	Variation	(b) coefficient of Standa (d) none	ard deviation

246	. In ——— range has th	e greatest use.		
	(a) Time series	(b) quality control	(c) both	(d) none
247	. Mean is an absolute m deviation is a relative 1		eviation is based upon i	t. Therefore standard
	(a) True	(b) false	(c) both	(d) none
248	.Semi—quartile range is	s one-fourth of the ra	nge in a normal symme	trical distribution.
	(a) Yes	(b) No	(c) both	(d) none
249	. Whole frequency table	is needed for the cal-	culation of	
	(a) range	(b) variance	(c) both	(d) none
250	. Relative measures of d	ispersion make devia	tions in similar units cor	nparable.
	(a) True	(b) false	(c) both	(d) none
251	. Quartile deviation is ba	ased on the		
	(a) highest 50%(c) highest 25%		(b) lowest 25% (d) middle 50% of the i	tem.
252	.S.D is less than Mean	deviation		
	(a) True	(b) false	(c) both	(d) none
253	. Coefficient of variation	is independent of th	e unit of measurement.	
	(a) True	(b) false	(c) both	(d) none
254	. Coefficient of variation	is a relative measure	e of	
	(a) mean	(b) deviation	(c) range	(d) dispersion.
255	. Coefficient of variation	is equal to		
	(a) Standard deviation(c) Standard deviation		(b) Standard deviation :(d) none	x 100 / mode
256	. Coefficient of Quartile	Deviation is equal to		
	(a) Quartile deviation >(c) Quartile deviation >		(b) Quartile deviation x(d) none	100 / mean
257	. If each item is reduced	by 15 A.M is		
	(a) reduced by 15	(b) increased by 15	(c) reduced by 10	(d) none
258	. If each item is reduced	by 10, the range is		
	(a) increased by 10	(b) decreased by 10	(c) unchanged	(d) none
259	. If each item is reduced	by 20, the standard	deviation	
	(a) increased	(b) decreased	(c) unchanged	(d) none

11.79

260.	If the variables are incr	reased or decreased by	y the same amount the s	standard deviation is
	(a) decreased	(b) increased	(c) unchanged	(d) none
261.	If the variables are increchanges by	eased or decreased by	the same proportion, th	ne standard deviation
	(a) same proportion	(b) different proport	ion (c) both	(d) none
262		. 1		
262.	The mean of the 1 st n n		() () ()	(1)
	(a) n/2	(b) (n-1)/2	, , , , ,	(d) none
263.	If the class interval is o	_		
	(a) frequency	(b) A.M	(c) both	(d) none
264.	Which one is true—			
	(a) A.M = assumed me	an + arithmetic mean	of deviations of terms	
	(b) G.M = assumed me	an + arithmetic mean	of deviations of terms	
	(c) Both		(d) none	
265.	If the A.M of any distri	bution be 25 & one to	erm is 18. Then the devia	ation of 18 from A.M
	(a) 7	(b) 2	(c) 43	(d) none
266.	For finding A.M in Step	p—deviation method,	the class intervals shou	ld be of
	(a) equal lengths	(b) unequal lengths	(c) maximum lengths	(d) none
267.	The sum of the squares A.M	of the deviations of the	ne variable is ————	— when taken about
	(a) maximum	(b) zero	(c) minimum	(d) none
268.	The A.M of 1, 3, 5, 6, x	, 10 is 6 . The value o	of x is	
	(a) 10	(b) 11	(c) 12	(d) none
269.	The G.M of 2 & 8 is			
	(a) 2	(b) 4	(c) 8	(d) none
270.	(n+1)/2 th term is med	ian if n is		
	(a) odd	(b) even	(c) both	(d) none
271.	For the values of a var	iable 5, 2, 8, 3, 7, 4, t	he median is	
	(a) 4	(b) 4.5	(c) 5	(d) none
272.	The abscissa of the max	ximum frequency in t	he frequency curve is th	e
	(a) mean	(b) median	(c) mode	(d) none

Copyright - The Institute of Chartered Accountants of India

								- Charles
273	variable : no. of men : Mode is	2 5	3 6	4 8	5 13	6 7	7 4	
	(a) 6	(b) 4		(c)	5		(d) none	
274	.The class having ma	ximum f	requency	is called				
	(a) modal class	(b) m	edian clas	ss (c)	mean class		(d) none	
275	. For determination of	mode, t	he class ir	ntervals sl	nould be			
	(a) overlapping	(b) m	aximum	(c)	minimum		(d) none	
276	First Quartile lies in	the class	interval c	of the				
	(a) n/2th item	(b) n,	/4 th item	(c)	3n/4 th item	L	(d) n/10 th i	tem
277	.The value of a variat	te that oc	cur most	often is c	alled			
	(a) median	(b) m	ean	(c)	mode		(d) none	
278	. For the values of a v	variable 3	3, 1, 5, 2,	6, 8, 4 the	median is			
	(a) 3	(b) 5		(c)	4		(d) none	
279	If $y = 5 \times -20 \& \times ba$	ar = 30 th	en the val	lue of y b	ar is			
	(a) 130	(b) 14	Ю	(c)	30		(d) none	
280	If $y = 3 \times -100$ and $x = -100$	k bar = 50) then the	value of	y bar is			
	(a) 60	(b) 30		(c)	100		(d) 50	
281	.The median of the r	nos. 11, 1	0, 12, 13,	The same of the sa	HILLING			
	(a) 12.5	(b) 12		(c)	10.5		(d) 11	
282	.The mode of the no	s. 7, 7, 7	, 9, 10, 11	, 11, 11,	12 is			
	(a) 11	(b) 12	2	(c)	7		(d) 7 & 11	
283	In a symmetrical dis would give	stributior	when th	ie 3 rd quai	rtile plus 1 ^s	st quartile	is halved, t	he value
	(a) mean	(b) m	ode	(c)	median		(d) none	
284	. In Zoology, ———	is t	used.					
	(a) median	(b) m	ean	(c)	mode		(d) none	
285	. For calculation of Sp	eed & V	elocity					
	(a) G.M	(b) A	.M	(c)	H.M		(d) none is	used.
286	.The S.D is always ta	ken from	1					
	(a) median	(b) m	ode	(c)	mean		(d) none	
287	.Coefficient of Standa	ard devia	tion is eq	ual to				
	(a) S.D/A.M	(b) A	.M/S.D	(c)	S.D/GM		(d) none	

288. The distribution , for which the coefficient of variation is less, is ——— consistent.

(a) less

(b) more

(c) moderate

(d) none

ANSWERS

1	(b)	2	(a)	3	(c)	4	(a)	5	(b)
6	(a)	7	(d)	8	(c)	9	(b)	10	(a)
11	(a)	12	(a)	13	(b)	14	(d)	15	(a)
16	(d)	17	(b)	18	(a)	19	(b)	20	(a)
21	(b)	22	(d)	23	(a)	24	(c)	25	(b)
26	(a)	27	(a)						
31	(c)	32	(a)	33	(b)	34	(c)	35	(a)
36	(a)	37	(a)	38	(a)	39	(a)	40	(a)
41	(c)	42	(a)	43	(a)	44	(b)	45	(a)
46	(b)	47	(a)	48	(a) 5	49	(b)	50	(a)
51	(a)	52	(d)	53	(b)	54	(a)	55	(b)
56	(c)	57	(a)	61	(b) \ \ \	62	(d)	63	(a)
64	(b)	65	(b)	66	(c) was	67	(c)	68	(a)
69	(a)	70	(c)	71	(c) अपनेतु जाताति।	72	(c)	73	(a)
74	(a)	75	(d)	76		77	(b)	78	(b)
79	(a)	80	(c)	81	(b)	82	(a)	83	(b)
84	(b)	85	(a)	86	(c)	87	(c)	91	(b)
92	(d)	93	(a)	94	(d)	95	(c)	96	(c)
97	(a)	98	(a)	99	(c)	100	(b)	101	(a)
102	(b)	103	(c)	104	(a)	105	(b)	106	(a)
107	(d)	108	(c)	109	(a)	110	(b)	111	(c)
112	(b)	113	(b)	114	(a)	115	(b)	116	(c)
117	(c)	121	(a)						
122	(a)	123	(b)	124	(b)	125	(c)	126	(d)
127	(d)	128	(a)	129	(c)	130	(b)	131	(a)
132	(a)	133	(a)	134	(b)	135	(c)	136	(a)
137	(d)	138	(a)	139	(b)	140	(a)	141	(d)

142 (c)	143 (c)	144 (a)	145 (b)	146 (a)
147 (b)	151 (b)			
152 (b)	153 (c)	154 (a)	155 (a)	156 (c)
157 (b)	158 (d)	159 (a)	160 (c)	161 (a)
162 (b)	163 (a)	164 (c)	165 (a)	166 (b)
167 (c)	168 (a)	169 (b)	170 (b)	171 (c)
172 (a)	173 (c)	174 (b)	175 (c)	176 (b)
177 (c)	181 (c)			
182 (a)	183 (c)	184 (a)	185 (a)	186 (b)
187 (a)	188 (c)	189 (c)	190 (b)	191 (a)
192 (b)	193 (b)	194 (b)	195 (a)	196 (a)
197 (a)	198 (b)	199 (b)	200 (b)	201 (a)
202 (c)	203 (d)	204 (b)	205 (a)	206 (b)
207 (b)	211 (a)			
212 (b)	213 (a)	/214 (b)	215 (a)	216 (b)
217 (c)	218 (a)	219 (a)	220 (a)	221 (a)
222 (b)	223 (c)	224 (a)	225 (d)	226 (a)
227 (b)	228 (a)	229 (d) 343 amin	230 (c)	231 (a)
232 (b)	233 (a)	234 (d)	235 (b)	236 (b)
237 (c)	241 (b)			
242 (a)	243 (c)	244 (a)	245 (c)	246 (b)
247 (b)	248 (a)	249 (c)	250 (b)	251 (d)
252 (b)	253 (a)	254 (d)	255 (c)	256 (a)
257 (a)	258 (c)	259 (c)	260 (c)	261 (a)
262 (c)	263 (b)	264 (a)	265 (b)	266 (a)
267 (c)	271 (b)			
272 (c)	273 (c)	274 (a)	275 (a)	276 (b)
277 (c)	278 (c)	279 (a)	280 (d)	281 (d)
282 (d)	283 (c)	284 (c)	285 (c)	286 (c)
287 (a)	288 (b)			